搜索
首页科技周边人工智能开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

0. 这篇文章干了啥?

提出了DepthFM:一个多功能且快速的最先进的生成式单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修复等下游任务中的最先进能力。DepthFM效率高,可以在少数推理步骤内合成深度图。

下面一起来阅读一下这项工作~

1. 论文信息

标题:DepthFM: Fast Monocular Depth Estimation with Flow Matching

作者:Ming Gui, Johannes S. Fischer, Ulrich Prestel, Pingchuan Ma, Dmytro Kotovenko, Olga Grebenkova, Stefan Andreas Baumann, Vincent Tao Hu, Björn Ommer

机构:MCML

原文链接:https://arxiv.org/abs/2403.13788

代码链接:https://github.com/CompVis/depth-fm

官方主页:https://depthfm.github.io/

2. 摘要

针对许多下游观光任务和应用至关重要。目前针对此问题的判别式方法受到模糊伪影的限制,而最先进的生成方法由于其SDE性质导致训练样本速度缓慢。我们不是从噪声开始,而是寻求从输入图像到深度图像的直接映射。我们观察到这可通过流匹配来有效地构建,因为其在解空间中的直线轨迹提供了效率和高质量。我们的研究表明,预先训练的图像扩散模型可用于作为流匹配深度模型的充分先验知识。在复杂自然场景的基准测试中,尽管仅在少量合成数据上进行训练,我们的轻量级方法以有利的低计算成本表现出最先进的性能。

3. 效果展示

DepthFM是一种具有强零样本泛化能力的快速推理流匹配模型,可利用强大的先验知识,并且很容易地泛化到未知的真实图像中。在合成数据上进行训练后,模型可以很好地泛化到未知的真实图像中,并对深度图像进行精确匹配。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

与其他最先进的模型相比,DepthFM仅用一个函数评估就获得了明显更清晰的图像。Marigold的深度估计耗时是DepthFM的两倍,但无法生成相同粒度的深度图。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

4. 主要贡献

(1)提出了DepthFM,一种最先进的、多功能的、快速的单目深度估计模型。除了传统的深度估计任务外,DepthFM还展示了在深度修补和深度条件图像合成等下游任务中的最新能力。

(2)展示了将强大的图像先验从扩散模型成功转移到流匹配模型,几乎不依赖于训练数据,也不需要真实世界的图像。

(3)表明,流匹配模型高效,并能在单个推理步骤内合成深度图。

(4)尽管仅在合成数据上进行训练,但DepthFM在基准数据集和自然图像上表现出色。

(5)将表面法线损失作为辅助目标,以获得更准确的深度估计。

(6)除了深度估计,还可可靠地预测其预测的置信度。

5. 具体原理是啥?

训练Pipeline。 训练受到流匹配和表面法向损失的限制:对于流匹配,使用数据依赖的流匹配来回归地面真实深度与对应图像之间的向量场。此外,通过一个表面法向损失来实现几何真实感。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

数据相关的流匹配: DepthFM通过利用图像到深度对,回归出图像分布和深度分布之间的直线向量场。这种方法在不牺牲性能的情况下促进了高效的几步推理。

从扩散先验微调: 作者展示了成功将强大的图像先验从基础图像合成扩散模型(Stable Diffusion v2-1)转移到流匹配模型,几乎不依赖训练数据,并且不需要真实世界的图像。

辅助表面法线损失: 考虑到DepthFM只在合成数据上进行训练,大多数合成数据集提供了地面真实表面法线,将表面法线损失作为辅助目标,以增强DepthFM深度估计的准确性。

6. 实验结果

DepthFM通过仅在63k纯合成样本上进行训练展现出了显着的泛化能力,并且能够在室内外数据集上进行零- shot深度估计。表1定性地展示了DepthFM与最先进的对应模型的性能对比。虽然其他模型通常依赖于大量数据集进行训练,但DepthFM利用了基于扩散的基础模型中固有的丰富知识。这种方法不仅节省了计算资源,而且强调了模型的适应性和训练效率。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

对基于扩散的Marigold深度估计、流匹配(FM)基准和DepthFM模型进行比较。每种方法仅使用一个集合成员进行评估,并针对两个常见基准数据集进行不同数量的函数评估(NFE)。与FM基准相比,DepthFM集成了训练过程中的法线损失和数据相关的耦合。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

对于Marigold和的DepthFM模型在不同数量的功能评估中的定性结果。值得注意的是,通过一步推断,Marigold并没有给出任何有意义的结果,而DepthFM的结果已经显示了真实的深度图。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

在Hypersim上进行深度补全。左:给予部分深度。中:深度估计从给定的部分深度。右:真值深度。

开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!

7. 总结

DepthFM,一种用于单目深度估计的流匹配方法。通过学习输入图像和深度之间的直接映射,而不是将正态分布去噪为深度图,该方法明显比当前基于扩散的解决方案更高效,同时仍提供细粒度的深度图,而不会出现判别式范式的常见伪影。 DepthFM使用预先训练好的图像扩散模型作为先验,有效地转移到了深度流匹配模型中。因此,DepthFM只在合成数据上进行了训练,但在推断期间仍然能很好地推广到自然图像。此外,辅助表面法线损失已被证明能改善深度估计。 DepthFM的轻量级方法具有竞争力,速度快,并提供可靠的置信度估计。

对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文

以上是开源!超越ZoeDepth! DepthFM:快速且精确的单目深度估计!的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

人工智能的环境成本和承诺人工智能的环境成本和承诺Apr 08, 2023 pm 04:31 PM

人工智能(AI)在流行文化和政治分析中经常以两种极端的形式出现。它要么代表着人类智慧与科技实力相结合的未来主义乌托邦的关键,要么是迈向反乌托邦式机器崛起的第一步。学者、企业家、甚至活动家在应用人工智能应对气候变化时都采用了同样的二元思维。科技行业对人工智能在创建一个新的技术乌托邦中所扮演的角色的单一关注,掩盖了人工智能可能加剧环境退化的方式,通常是直接伤害边缘人群的方式。为了在应对气候变化的过程中充分利用人工智能技术,同时承认其大量消耗能源,引领人工智能潮流的科技公司需要探索人工智能对环境影响的

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

条形统计图用什么呈现数据条形统计图用什么呈现数据Jan 20, 2021 pm 03:31 PM

条形统计图用“直条”呈现数据。条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来;从条形统计图中很容易看出各种数量的多少。条形统计图分为:单式条形统计图和复式条形统计图,前者只表示1个项目的数据,后者可以同时表示多个项目的数据。

自动驾驶车道线检测分类的虚拟-真实域适应方法自动驾驶车道线检测分类的虚拟-真实域适应方法Apr 08, 2023 pm 02:31 PM

arXiv论文“Sim-to-Real Domain Adaptation for Lane Detection and Classification in Autonomous Driving“,2022年5月,加拿大滑铁卢大学的工作。虽然自主驾驶的监督检测和分类框架需要大型标注数据集,但光照真实模拟环境生成的合成数据推动的无监督域适应(UDA,Unsupervised Domain Adaptation)方法则是低成本、耗时更少的解决方案。本文提出对抗性鉴别和生成(adversarial d

数据通信中的信道传输速率单位是bps,它表示什么数据通信中的信道传输速率单位是bps,它表示什么Jan 18, 2021 pm 02:58 PM

数据通信中的信道传输速率单位是bps,它表示“位/秒”或“比特/秒”,即数据传输速率在数值上等于每秒钟传输构成数据代码的二进制比特数,也称“比特率”。比特率表示单位时间内传送比特的数目,用于衡量数字信息的传送速度;根据每帧图像存储时所占的比特数和传输比特率,可以计算数字图像信息传输的速度。

数据分析方法有哪几种数据分析方法有哪几种Dec 15, 2020 am 09:48 AM

数据分析方法有4种,分别是:1、趋势分析,趋势分析一般用于核心指标的长期跟踪;2、象限分析,可依据数据的不同,将各个比较主体划分到四个象限中;3、对比分析,分为横向对比和纵向对比;4、交叉分析,主要作用就是从多个维度细分数据。

聊一聊Python 实现数据的序列化操作聊一聊Python 实现数据的序列化操作Apr 12, 2023 am 09:31 AM

​在日常开发中,对数据进行序列化和反序列化是常见的数据操作,Python提供了两个模块方便开发者实现数据的序列化操作,即 json 模块和 pickle 模块。这两个模块主要区别如下:json 是一个文本序列化格式,而 pickle 是一个二进制序列化格式;json 是我们可以直观阅读的,而 pickle 不可以;json 是可互操作的,在 Python 系统之外广泛使用,而 pickle 则是 Python 专用的;默认情况下,json 只能表示 Python 内置类型的子集,不能表示自定义的

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具