只需一张照片,和一段音频,就能直接生成人物说话的视频!
近日,来自谷歌的研究人员发布了多模态扩散模型VLOGGER,让我们朝着虚拟数字人又迈进了一步。
论文地址:https://enriccorona.github.io/vlogger/paper.pdf
Vlogger可以收集单个输入图像,使用文本或者音频驱动,生成人类语音的视频,包括口型、表情、肢体动作等都非常自然。
我们先来看几个例子:
如果感觉视频使用别人的声音有点违和,小编帮你关掉声音:
可以看出整个生成的效果是非常优雅自然的。
VLOGGER建立在最近生成扩散模型的成功之上,包括一个将人类转成3D运动的模型,以及一个基于扩散的新架构,用于通过时间和空间控制,增强文本生成图像的效果。
VLOGGER可以生成可变长度的高质量视频,并且这些视频可以通过人脸和身体的高级表示轻松控制。
比如我们可以让生成视频中的人闭上嘴:
或者闭上双眼:
与之前的同类模型相比,VLOGGER不需要针对个体进行训练,不依赖于面部检测和裁剪,而且包含了肢体动作、躯干和背景,——构成了可以交流的正常的人类表现。
AI的声音、AI的表情、AI的动作、AI的场景,人类开始的价值是提供数据,再往后可能就没什么价值了?
在数据方面,研究人员收集了一个新的、多样化的数据集MENTOR,比之前的同类数据集大了整整一个数量级,其中训练集包括2200小时、800000个不同个体,测试集为120小时、4000个不同身份的人。
研究人员在三个不同的基准上评估了VLOGGER,表明模型在图像质量、身份保存和时间一致性方面达到了目前的最优。
VLOGGER
VLOGGER的目标是生成一个可变长度的逼真视频,来描绘目标人说话的整个过程,包括头部动作和手势。
如上图所示,给定第1列所示的单个输入图像和一个示例音频输入,右列中展示了一系列合成图像。
包括生成头部运动、凝视、眨眼、嘴唇运动,还有以前模型做不到的一点,生成上半身和手势,这是音频驱动合成的一大进步。
VLOGGER采用了基于随机扩散模型的两阶段管道,用于模拟从语音到视频的一对多映射。
第一个网络将音频波形作为输入,以生成身体运动控制,负责目标视频长度上的凝视、面部表情和姿势。
第二个网络是一个包含时间的图像到图像的平移模型,它扩展了大型图像扩散模型,采用预测的身体控制来生成相应的帧。为了使这个过程符合特定身份,网络获取了目标人的参考图像。
VLOGGER使用基于统计的3D身体模型,来调节视频生成过程。给定输入图像,预测的形状参数对目标标识的几何属性进行编码。
首先,网络M获取输入语音,并生成一系列N帧的3D面部表情和身体姿势。
然后渲染移动3D身体的密集表示,以在视频生成阶段充当2D控件。这些图像与输入图像一起作为时间扩散模型和超分辨率模块的输入。
音频驱动的运动生成
管道的第一个网络旨在根据输入语音预测运动。此外还通过文本转语音模型将输入文本转换为波形,并将生成的音频表示为标准梅尔频谱图(Mel-Spectrograms)。
管道基于Transformer架构,在时间维度上有四个多头注意力层。包括帧数和扩散步长的位置编码,以及用于输入音频和扩散步骤的嵌入MLP。
在每一帧中,使用因果掩码使模型只关注前一帧。模型使用可变长度的视频进行训练(比如TalkingHead-1KH数据集),以生成非常长的序列。
研究人员采用基于统计的3D人体模型的估计参数,来为合成视频生成中间控制表示。
模型同时考虑了面部表情和身体运动,以生成更好的表现力和动态的手势。
此外,以前的面部生成工作通常依赖于扭曲(warped)的图像,但在基于扩散的架构中,这个方法被忽视了。
作者建议使用扭曲的图像来指导生成过程,这促进了网络的任务并有助于保持人物的主体身份。
生成会说话和移动的人类
下一个目标是对一个人的输入图像进行动作处理,使其遵循先前预测的身体和面部运动。
受ControlNet的启发,研究人员冻结了初始训练的模型,并采用输入时间控件,制作了编码层的零初始化可训练副本。
作者在时间域中交错一维卷积层,网络通过获取连续的N帧和控件进行训练,并根据输入控件生成参考人物的动作视频。
模型使用作者构建的MENTOR数据集进行训练,因为在训练过程中,网络会获取一系列连续的帧和任意的参考图像,因此理论上可以将任何视频帧指定为参考。
不过在实践中,作者选择采样离目标剪辑更远的参考,因为较近的示例提供的泛化潜力较小。
网络分两个阶段进行训练,首先在单帧上学习新的控制层,然后通过添加时间分量对视频进行训练。这样就可以在第一阶段使用大批量,并更快地学习头部重演任务。
作者采用的learning rate为5e-5,两个阶段都以400k的步长和128的批量大小训练图像模型。
多样性
下图展示了从一个输入图片生成目标视频的多样化分布。最右边一列显示了从80个生成的视频中获得的像素多样性。
在背景保持固定的情况下,人的头部和身体显着移动(红色意味着像素颜色的多样性更高),并且,尽管存在多样性,但所有视频看起来都很逼真。
视频编辑
模型的应用之一是编辑现有视频。在这种情况下,VLOGGER会拍摄视频,并通过闭上嘴巴或眼睛等方式改变拍摄对象的表情。
在实践中,作者利用扩散模型的灵活性,对应该更改的图像部分进行修复,使视频编辑与原始未更改的像素保持一致。
视频翻译
模型的主要应用之一是视频翻译。在这种情况下,VLOGGER会以特定语言拍摄现有视频,并编辑嘴唇和面部区域以与新音频(例如西班牙语)保持一致。
以上是一张图即出AI视频!谷歌全新扩散模型,让人物动起来的详细内容。更多信息请关注PHP中文网其他相关文章!

介绍 恭喜!您经营一家成功的业务。通过您的网页,社交媒体活动,网络研讨会,会议,免费资源和其他来源,您每天收集5000个电子邮件ID。下一个明显的步骤是

介绍 在当今快节奏的软件开发环境中,确保最佳应用程序性能至关重要。监视实时指标,例如响应时间,错误率和资源利用率可以帮助MAIN

“您有几个用户?”他扮演。 阿尔特曼回答说:“我认为我们上次说的是每周5亿个活跃者,而且它正在迅速增长。” “你告诉我,就像在短短几周内翻了一番,”安德森继续说道。 “我说那个私人

介绍 Mistral发布了其第一个多模式模型,即Pixtral-12b-2409。该模型建立在Mistral的120亿参数Nemo 12B之上。是什么设置了该模型?现在可以拍摄图像和Tex

想象一下,拥有一个由AI驱动的助手,不仅可以响应您的查询,还可以自主收集信息,执行任务甚至处理多种类型的数据(TEXT,图像和代码)。听起来有未来派?在这个a


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。