搜索
首页科技周边人工智能LLM将成历史?开源bGPT或颠覆深度学习范式:直接模拟二进制,开启模拟数字世界新纪元!

微软亚洲研究院推出的最新成果bGPT,这种基于字节的Transformer模型,为我们探索数字世界开辟了新的大门。

与传统基于词表的语言模型不同,bGPT具有独特之处,即其能够直接处理原始二进制数据,不受特定格式或任务的限制。其旨在全面模拟数字世界,为模型的发展打开了新的可能性。

LLM将成历史?开源bGPT或颠覆深度学习范式:直接模拟二进制,开启模拟数字世界新纪元!

论文:https://www.php.cn/link/ee88b3cea2051be97bcddf2e0d9a28f6

代码:https://www.php.cn/link/359499f804ea7988921bf86c9377fb95

模型:https://www.php.cn/link/4b459ea1a5917be436df5f0bd5b3c4ad

项目主页:https://www.php.cn/link/71af59614c8b42af334933e9261e53be

研究小组在他们的研究论文中展示了bGPT在建模方面的巨大潜力。通过进行字节级处理,bGPT不仅能够生成文本、图像和音频,还能够模拟计算机的行为,包括格式转换算法和CPU状态的建模。这种将所有数据视为字节序列的方法使得bGPT能够将不同类型的数据整合到同一个框架中。

一经发布,bGPT的论文在X(Twitter)上引起了广泛热议,突显了深度学习模式的潜在变革,为模型真正理解和模拟数字世界中的各种活动打开了新可能性。

二进制数据:构成数字世界的基础DNA

二进制数据是数字世界的基石,它贯穿了计算机处理器以及我们日常使用的电子产品的操作系统,是所有数据、设备和软件的核心。因此,基于这一基础,bGPT的目标是通过研究二进制数据序列来理解数字系统的内在逻辑,从而重塑和模拟各种复杂的数字现象。

bGPT通过字节级的处理,不仅能应用于常规的AI生成和理解任务,还能处理更多的非传统应用。例如,它能直接模拟MIDI——一种音乐传输和存储的标准格式,这在之前的研究中由于MIDI的二进制本质而避免了直接建模。

但bGPT天生适合此类任务,能够精确模拟音乐数据的转换算法,将ABC记谱法转换为MIDI格式时,达到极低的错误率(0.0011 BPB)。

在实际应用中,bGPT通常能够准确地完成ABC符号与MIDI文件之间的转换,有时甚至能纠正原始文件中的错误,使音乐转换更加准确。

LLM将成历史?开源bGPT或颠覆深度学习范式:直接模拟二进制,开启模拟数字世界新纪元!


bGPT自动将ABC记谱法转换成MIDI格式(上图)与原MIDI数据(下图)的对比,凸显了关键的差异:虽然原MIDI数据中漏掉了一拍(见下图),导致和弦伴奏断开,但由bGPT转换的结果(见上图)正确填补了这一缺失,确保了和弦伴奏的流畅性。

研究团队还将CPU建模作为硬件行为模拟的代表性任务:该任务要求模型接收低级机器指令序列作为输入,其目标是准确预测每个指令执行后CPU状态如何更新,直至程序停止。

在这个任务中,bGPT展现出超过99.99%的准确率,显示了字节模型在处理原生二进制数据方面的强大能力和可扩展性。

LLM将成历史?开源bGPT或颠覆深度学习范式:直接模拟二进制,开启模拟数字世界新纪元!

在提供了程序和初始CPU状态的情况下,bGPT能够准确地预测CPU执行的完整过程,直到程序终止。在这个示例中,bGPT精确地处理了所有CPU指令。为了便于理解,这里将实际的字节序列转换成了更易读的格式。

从字节到万物:突破边界,向着统一的数据建模进发

bGPT不仅能处理原生二进制数据,还能将多种数据类型融合进一个统一的模型架构中,视一切数据为字节序列。

这种方法不但简化了数据建模流程,还使得从任何数据源的整合变得轻而易举,且无需为特定数据类型定制模型。

研究团队在论文中举例了传统文本、图像及音频文件,展现了bGPT在统一数据建模方面的能力。他们训练的bGPT模型拥有约1亿参数。

实验结果表明,在与GPT-2(文本模型)、ViT(视觉模型)和AST(音频模型)等同规模模型的比较中,bGPT在不同数据类型上均展现出了可媲美的性能。

bGPT在文本生成方面的表现非常出色。得益于其字节级的文本编码,该模型无需依赖词汇表,从而能支持所有语言。

它的分层Transformer架构,尽管计算开销与GPT-2相近,却能生成长达8KB的文本,大大超出了GPT-2的长度限制。在经过Wikipedia数据进行预训练后,bGPT生成的文本在风格和主题上都与GPT-2不相上下,证明了其在文本生成方面的强大能力。

bGPT在Wikipedia数据集上进行预训练,生成的文本样例质量和主题一致性与GPT-2相当。

bGPT可以通过预测图像字节序列中的下一个字节来生成图像。该模型在ImageNet数据集上进行了预训练,生成的图像分辨率为32x32像素。

虽然在当前规模下,通过字节序列准确捕捉图像的二维空间关系有所困难,导致生成的图像存在伪影和噪点,但纹理和光影效果通常还是比较准确的。

此外,这些生成的图像均能被正常解码为BMP文件。研究团队指出,通过扩大bGPT的规模,类似于OpenAI开发的iGPT在像素序列建模方面的方法,或许可以实现更高质量、更逼真的图像生成。

这些是由在ImageNet数据集上进行预训练的bGPT生成的一组图像。虽然图像的纹理和光影效果通常比较准确,但在这些生成的图像中识别主要物体却有一定难度。

bGPT将音频数据视为字节序列,能生成1秒长、采样率为8000 Hz的音频样本。

该模型在LibriSpeech数据集上完成了预训练,并进一步在Speech Commands v2数据集上进行微调和演示。bGPT生成的音频样本保持了较高的准确度,其中一些样本几乎与真实音频无法区分。以下是展示bGPT在音频生成领域能力的示例集。

通过bGPT探索字节构成的数字世界

传统语言模型,不管它们有多强大,主要专注于处理自然语言文本。bGPT模型通过基于字节的处理机制,打破了这种仅限于文本处理的局限性,开辟了一个全新的数据处理范畴。

这一进步让bGPT有能力无缝地处理包括文本、图像、音频在内的各种数据类型,甚至能处理来自算法和硬件的原生二进制数据,为全面模拟和理解数字世界铺平了道路。

虽然bGPT展现出了引人注目的能力,但其在计算开销方面的局限性,如当前在常规显卡上仅能处理最大8KB的字节序列,对于那些需要生成或处理大量数据的应用来说,构成了明显的限制。未来的工作计划将集中在开发更高效的算法和利用硬件的进步上,旨在提高处理更大规模数据序列的能力。

全球的技术爱好者们已经开始展望bGPT未来的潜力,从网络修剪和自我学习的优化到超大规模网络的自我重构能力,这些讨论指向了一个共同的愿景:bGPT最终可能实现一个统一的模型,能够处理和输出所有类型的字节数据,真正成为数字世界的全面模拟器。

LLM将成历史?开源bGPT或颠覆深度学习范式:直接模拟二进制,开启模拟数字世界新纪元!

研究团队已将bGPT的代码和模型开源。这意味着你可以在自己的数据集上直接训练bGPT,无需做出任何模型架构上的调整,便可探索字节模型在数字领域的广阔前景。

以上是LLM将成历史?开源bGPT或颠覆深度学习范式:直接模拟二进制,开启模拟数字世界新纪元!的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
微软工作趋势指数2025显示工作场所容量应变微软工作趋势指数2025显示工作场所容量应变Apr 24, 2025 am 11:19 AM

由于AI的快速整合而加剧了工作场所的迅速危机危机,要求战略转变以外的增量调整。 WTI的调查结果强调了这一点:68%的员工在工作量上挣扎,导致BUR

AI可以理解吗?中国房间的论点说不,但是对吗?AI可以理解吗?中国房间的论点说不,但是对吗?Apr 24, 2025 am 11:18 AM

约翰·塞尔(John Searle)的中国房间论点:对AI理解的挑战 Searle的思想实验直接质疑人工智能是否可以真正理解语言或具有真正意识。 想象一个人,对下巴一无所知

中国的'智能” AI助手回应微软召回的隐私缺陷中国的'智能” AI助手回应微软召回的隐私缺陷Apr 24, 2025 am 11:17 AM

与西方同行相比,中国的科技巨头在AI开发方面的课程不同。 他们不专注于技术基准和API集成,而是优先考虑“屏幕感知” AI助手 - AI T

Docker将熟悉的容器工作流程带到AI型号和MCP工具Docker将熟悉的容器工作流程带到AI型号和MCP工具Apr 24, 2025 am 11:16 AM

MCP:赋能AI系统访问外部工具 模型上下文协议(MCP)让AI应用能够通过标准化接口与外部工具和数据源交互。由Anthropic开发并得到主要AI提供商的支持,MCP允许语言模型和智能体发现可用工具并使用合适的参数调用它们。然而,实施MCP服务器存在一些挑战,包括环境冲突、安全漏洞以及跨平台行为不一致。 Forbes文章《Anthropic的模型上下文协议是AI智能体发展的一大步》作者:Janakiram MSVDocker通过容器化解决了这些问题。基于Docker Hub基础设施构建的Doc

使用6种AI街头智能策略来建立一家十亿美元的创业使用6种AI街头智能策略来建立一家十亿美元的创业Apr 24, 2025 am 11:15 AM

有远见的企业家采用的六种策略,他们利用尖端技术和精明的商业敏锐度来创造高利润的可扩展公司,同时保持控制权。本指南是针对有抱负的企业家的,旨在建立一个

Google照片更新解锁了您所有图片的惊人Ultra HDRGoogle照片更新解锁了您所有图片的惊人Ultra HDRApr 24, 2025 am 11:14 AM

Google Photos的新型Ultra HDR工具:改变图像增强的游戏规则 Google Photos推出了一个功能强大的Ultra HDR转换工具,将标准照片转换为充满活力的高动态范围图像。这种增强功能受益于摄影师

Descope建立AI代理集成的身份验证框架Descope建立AI代理集成的身份验证框架Apr 24, 2025 am 11:13 AM

技术架构解决了新兴的身份验证挑战 代理身份集线器解决了许多组织仅在开始AI代理实施后发现的问题,即传统身份验证方法不是为机器设计的

Google Cloud Next 2025以及现代工作的未来Google Cloud Next 2025以及现代工作的未来Apr 24, 2025 am 11:12 AM

(注意:Google是我公司的咨询客户,Moor Insights&Strateging。) AI:从实验到企业基金会 Google Cloud Next 2025展示了AI从实验功能到企业技术的核心组成部分的演变,

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。