大型模型仅能记忆和理解有限的上下文,这已成为它们在实际应用中的一大制约。例如,对话型人工智能系统常常无法持久记忆前一天的对话内容,这导致利用大型模型构建的智能体表现出前后不一致的行为和记忆。
为了让大型模型能够更好地处理更长的上下文,研究人员提出了一种名为InfLLM的新方法。这一方法由清华大学、麻省理工学院和人民大学的研究人员联合提出,它能够使大型语言模型(LLM)无需额外的训练就能够处理超长文本。InfLLM利用了少量的计算资源和显存开销,从而实现了对超长文本的高效处理。
论文地址:https://arxiv.org/abs/2402.04617
代码仓库:https://github.com/thunlp/InfLLM
实验结果表明,InfLLM能够有效地扩展Mistral、LLaMA的上下文处理窗口,并在1024K上下文的海底捞针任务中实现100%召回。
研究背景
大规模预训练语言模型(LLMs)近几年在众多任务上取得了突破性的进展,成为众多应用的基础模型。
这些实际应用也对LLMs处理长序列的能力提出了更高的挑战。例如,LLM驱动的智能体需要持续处理从外部环境接收的信息,这要求它具备更强的记忆能力。同时,对话式人工智能需要更好地记住与用户的对话内容,以便生成更个性化的回答。
然而,目前的大型模型通常只在包含数千个Token的序列上进行预训练,这导致将它们应用于超长文本时面临两大挑战:
1. 分布外长度:直接将LLMs应用到更长长度的文本中,往往需要LLMs处理超过训练范围的位置编码,从而造成Out-of-Distribution问题,无法泛化;
2. 注意力干扰:过长的上下文将使模型注意力被过度分散到无关的信息中,从而无法有效建模上下文中远距离语义依赖。
方法介绍
InfLLM示意图
为了高效地实现大模型的长度泛化能力,作者提出了一种无需训练的记忆增强方法,InfLLM,用于流式地处理超长序列。
InfLLM旨在激发LLMs的内在能力,以有限的计算成本捕获超长上下文中的长距离语义依赖关系,从而实现高效的长文本理解。
整体框架:考虑到长文本注意力的稀疏性,处理每个Token通常只需要其上下文的一小部分。
作者构建了一个外部记忆模块,用于存储超长上下文信息;采用滑动窗口机制,每个计算步骤,只有与当前Token距离相近的Tokens(Local Tokens)和外部记忆模块中的少量相关信息参与到注意力层的计算中,而忽略其他不相关的噪声。
因此,LLMs可以使用有限的窗口大小来理解整个长序列,并避免引入噪声。
然而,超长序列中的海量上下文对于记忆模块中有效的相关信息定位和记忆查找效率带来了重大挑战。
为了应对这些挑战,上下文记忆模块中每个记忆单元由一个语义块构成,一个语义块由连续的若干Token构成。
具体而言, (1)为了有效定位相关记忆单元,每个语义块的连贯语义比碎片化的Token更能有效满足相关信息查询的需求。
此外,作者从每个语义块中选择语义上最重要的Token,即接收到注意力分数最高的Token,作为语义块的表示,这种方法有助于避免在相关性计算中不重要Token的干扰。
(2)为了高效的内存查找,语义块级别的记忆单元避免了逐Token,逐注意力的相关性计算,降低了计算复杂性。
此外,语义块级别的记忆单元确保了连续的内存访问,并减少了内存加载成本。
得益于此,作者设计了一种针对上下文记忆模块的高效卸载机制(Offloading)。
考虑到大多数记忆单元的使用频率不高,InfLLM将所有记忆单元卸载到CPU内存上,并动态保留频繁使用的记忆单元放在GPU显存中,从而显着减少了显存使用量。
可以将InfLLM总结为:
1. 在滑动窗口的基础上,加入远距离的上下文记忆模块。
2. 将历史上下文切分成语义块,构成上下文记忆模块中的记忆单元。每个记忆单元通过其在之前注意力计算中的注意力分数确定代表性Token,作为记忆单元的表示。从而避免上下文中的噪音干扰,并降低记忆查询复杂度
实验分析
作者在Mistral-7b-Inst-v0.2(32K) 和Vicuna-7b-v1.5(4K)模型上应用InfLLM,分别使用4K和2K的局部窗口大小。
与原始模型、位置编码内插、Infinite-LM以及StreamingLLM进行比较,在长文本数据 Infinite-Bench 和 Longbench 上取得了显着的效果提升。
超长文本实验
此外,作者继续探索了InfLLM 在更长文本上的泛化能力,在1024K 长度的「海底捞针」任务中仍能保持100% 的召回率。
海底捞针实验结果
总结
在本文中,团队提出了InfLLM,无需训练即可实现LLM 的超长文本处理拓展,并可以捕捉到长距离的语义信息。
InfLLM 在滑动窗口的基础上,增加了包含长距离上下文信息的记忆模块,并使用缓存和offload 机制实现了少量计算和显存消耗的流式长文本推理。
以上是清华NLP组发布InfLLM:无需额外训练,「1024K超长上下文」100%召回!的详细内容。更多信息请关注PHP中文网其他相关文章!

隐藏者的开创性研究暴露了领先的大语言模型(LLM)的关键脆弱性。 他们的发现揭示了一种普遍的旁路技术,称为“政策木偶”,能够规避几乎所有主要LLMS

对环境责任和减少废物的推动正在从根本上改变企业的运作方式。 这种转变会影响产品开发,制造过程,客户关系,合作伙伴选择以及采用新的

最近对先进AI硬件的限制突出了AI优势的地缘政治竞争不断升级,从而揭示了中国对外国半导体技术的依赖。 2024年,中国进口了价值3850亿美元的半导体

从Google的Chrome剥夺了潜在的剥离,引发了科技行业中的激烈辩论。 OpenAI收购领先的浏览器,拥有65%的全球市场份额的前景提出了有关TH的未来的重大疑问

尽管总体广告增长超过了零售媒体的增长,但仍在放缓。 这个成熟阶段提出了挑战,包括生态系统破碎,成本上升,测量问题和整合复杂性。 但是,人工智能

在一系列闪烁和惰性屏幕中,一个古老的无线电裂缝带有静态的裂纹。这堆积不稳定的电子设备构成了“电子废物土地”的核心,这是身临其境展览中的六个装置之一,&qu&qu

Google Cloud的下一个2025:关注基础架构,连通性和AI Google Cloud的下一个2025会议展示了许多进步,太多了,无法在此处详细介绍。 有关特定公告的深入分析,请参阅我的文章

本周在AI和XR中:一波AI驱动的创造力正在通过从音乐发电到电影制作的媒体和娱乐中席卷。 让我们潜入头条新闻。 AI生成的内容的增长影响:技术顾问Shelly Palme


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Atom编辑器mac版下载
最流行的的开源编辑器

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中