通过消除「隐藏的低效」问题,计算机科学家提出了一种比以往更快的大型矩阵相乘新方法。
矩阵乘法作为众多GPU算子的基础操作,在高性能计算中扮演着重要角色,也是AI等应用的关键组成部分。虽然其算法本身相对简单,但为了实现更高的速度,人们多年来一直在不断努力优化。然而,优化的程度一直受到一定限制。
在最新一期的《量子杂志》报道中,我们发现了两篇能够加快矩阵乘法速度的论文。这两篇论文的撰写中,清华大学姚班一位大四本科生积极参与,为该领域的算法改进带来了崭新的前景。

矩阵乘法改进出现新「奇点」
计算机科学家是一群非常要求严格的人。他们追求的不仅是解决问题,更在于以最高效的方式达成目标。
以矩阵或数字数组相乘为例,1812年,法国数学家Jacques Philippe Marie Binet提出了一套基本规则,至今仍在教授学生。这套规则被广泛应用,但近年来一些数学家已发现了简化和加速该过程的方法。

法国数学家 Jacques Philippe Marie Binet。
目前,加速矩阵乘法过程已经成为数学和计算机科学的交叉领域。研究人员一直在努力改进这一过程,尽管近几十年来的进展有限。名古屋大学的计算机科学家François Le Gall指出,自1987年以来,对矩阵乘法的数值改进一直进展缓慢且难以实现。他认为在当前情况下,进一步提升矩阵乘法效率面临着巨大挑战,需要更多的创新和突破。尽管困难重重,但科学家们仍在不懈努力寻求突破,希望能够找到新的方法和技术,以提高矩阵乘法的计算速度和效率。这表明矩阵乘法优化仍然是一个具有挑战性的课题,需要集合
清华大学的段然(Ran Duan)、周任飞(Renfei Zhou)和加州大学伯克利分校的 Hongxun Wu 近期在解决这个长期存在的问题上取得了重要进展,他们的研究成果在一篇 87 页的论文中得以详细展示。Le Gall 对这三位研究者的工作给予了高度评价,他认为尽管改进相对较小,但在概念上却是前所未有的重大突破。
该论文被计算机科学领域的顶会 FOCS 2023 接收。

论文 v1 发布在 2022 年 10 月,v5 在 2023 年 11 月。论文地址:https://arxiv.org/abs/2210.10173
其中,段然为清华大学交叉信息研究院副教授,主要研究方向为图论算法、数据结构、计算理论。Hongxun Wu 为加州大学伯克利分校二年级博士生,也是清华姚班出身。
周任飞为清华姚班 2020 级的大四本科生,主修理论计算机科学(TCS)。他主要研究(简洁)数据结构和快速矩阵乘法,并对 TCS 的其他领域具有广泛兴趣,比如流算法、博弈论和在线算法等。
此前,周任飞曾在理论计算机科学顶级会议 FOCS/SODA 上发表多篇论文。

三位研究者的论文揭示了以前未知且未开发的潜在改进来源,并且已经取得了成果。2024 年 1 月发表的第二篇论文(周任飞同样参与撰写)以此为基础,展示了如何进一步增强矩阵乘法。

论文地址:https://epubs.siam.org/doi/10.1137/1.9781611977912.134
哈佛大学理论计算机科学家 William Kuszmaul 对此表示,这是一项重大的技术突破,是十多年来我们所看到的矩阵乘法的最大改进。
矩阵乘法要改进什么问题
矩阵乘法可能看起来是一个晦涩的问题,但它是一种基本的计算操作。它被融入了人们每天使用的大部分算法中,用于各种任务,从显示更清晰的计算机图形到解决网络理论中的物流问题。就像在计算的其他领域一样,速度至关重要。即使是微小的改进最终也可能大大减少所需要的时间、计算能力和金钱。但目前,理论家主要感兴趣的是弄清这个过程到底能够有多快。
传统的两个 n×n 矩阵相乘的方法 —— 即将第一个矩阵中每一行的数字与第二个矩阵中每一列的数字相乘 —— 需要进行 n³ 次独立的乘法操作。对于 2 乘 2 的矩阵而言,这意味着需要进行 2³,也就是 8 次乘法操作。

1969 年,数学家 Volker Strassen 发现了一种更精巧的方法,只需 7 个乘法步骤和 18 个加法步骤,就能完成 2×2 矩阵的乘法运算。两年后,计算机科学家 Shmuel Winograd 证明,对于 2×2 矩阵来说,7 步乘法确实是绝对最小值。

Strassen 利用同样的想法证明,所有较大的 n×n 矩阵也可以用少于 n3 步的方法进行乘法运算。这一策略中的一个关键因素涉及一个称为分解的程序:将一个大矩阵分解成一个个更小的子矩阵,这些子矩阵最终可能小到 2×2 甚至 1×1(只是单个数字)。
对于将巨型数组分解成小块的理由相当简单,麻省理工学院的计算机科学家 Virginia Vassilevska Williams 说:「对于一个大矩阵(比如 100×100 的矩阵),人类很难想到最佳的算法。」即使是 3 乘 3 的矩阵也还没有完全解决。「然而,人们可以使用已经为小矩阵开发的快速算法来获得更大矩阵的快速算法。」
研究人员确定,速度的关键在于减少乘法步骤的数量,尽可能将指数从 n3(传统方法)降低。可能的最低值 n² 基本上就是写出答案所需的时间。计算机科学家把这个指数称为 Ω,即 ω。nω 是当 n 越来越大时,成功将两个 n×n 矩阵相乘所需的最少步骤。同为 2024 年 1 月论文合著者的周任飞说:「这项工作的重点,是看你能接近 2 多少,并且是否可以在理论上实现。」
激光法
1986 年,Strassen 取得了另一项重大突破,他推出了矩阵乘法的激光法。Strassen 用它确定了 ω 的上限值为 2.48。虽然该方法只是大型矩阵乘法的一个步骤,但却是最重要的步骤之一,因为研究人员一直在不断改进它。
一年后,Winograd 和 Don Coppersmith 推出了一种新算法,对激光法进行了完美的补充。这套工具的组合在后来几乎所有加速矩阵乘法的研究中都得到了应用。
下面是一个简化的方法,让我们来看看这些不同的元素是如何结合在一起的。让我们从两个大型矩阵 A 和 B 开始,将它们相乘。首先,你要把它们分解成许多较小的子矩阵,有时也叫块。接下来,你就可以使用 Coppersmith 和 Winograd 的算法,将其作为处理并最终组装这些块的指导手册。Vassilevska Williams 说:「它告诉我在乘积矩阵 C 中要乘什么、加什么,以及哪些元素在哪里。」「它只是一个从 A 和 B 建立 C 的『配方』」。
然而,这里有一个问题:有时你会得到具有共同元素的块。保留这些共同元素会相当于将这些元素计算两次,因此在某个时候,需要消除这些重叠部分。研究人员通过「消灭」它们所在的块来解决这个问题 —— 将它们的分量设置为零以将它们从计算中移除。

Virginia Vassilevska Williams 是改进矩阵乘法新方法的团队成员之一,她提出了目前最快的方法。
这就是 Strassen 的激光法最终发挥作用的地方。Le Gall 说,「激光法通常非常有效,并且通常能找到消除重叠的子块的好方法」。在激光消除了所有重叠之后,你就可以构建最终的乘积矩阵 C。
将这些各种技术结合起来,就得到了一种用尽量少的乘法总数来乘两个矩阵的算法,至少在理论上是这样。激光法并不是为了实际应用;它只是一种思考矩阵相乘的理想方式。周任飞表示,「我们从未在计算机上运行这种方法,我们进行对它的分析。」
正是这种分析促成了 ω 十多年来的最大改进。
被发现的「隐藏损失」
在段然、周任飞和 Hongxun Wu 的第一篇论文《Faster Matrix Multiplication via Asymmetric Hashing》中,他们表明,施特拉森算法的进程可以大大加快。这一切要得益于他们称之为「隐藏损失」(hidden loss)的概念。周任飞表示,该概念深深地隐藏在以前的分析中,是无意中消除了太多块的结果。
激光法的工作原理是将重叠的块标记为垃圾,并安排处理,而其他块被认为有价值并将被保存。不过,选择过程有些随机。事实上,被标记为垃圾的块可能最终还是有用的。
这并不完全令人惊讶,但通过检查许多随机选择,段然团队确定激光法系统性地低估了块的价值,因此应该保存更多的块,减少扔掉的块。而且,正如通常的情况一样,更少的浪费可以转化为更高的效率。
对于段然团队的做法,Le Gall 认为,「能够保留更多块而不重叠,这种做法实现了更快的矩阵乘法算法。」
在证明了这种损失的存在后,段然团队修改了激光法标记块的方式,从而大大减少了浪费。他们将 ω 的新上限设定在了 2.371866 左右,这要比 Josh Alman 和 Vassilevska Williams 在 2020 年设定的上限 2.3728596 有所改进。
这看起来是一个不大的变化,将上限降低了大约 0.001,但这是自 2010 年以来科学家们看到的最大进步。相比之下,Vassilevska Williams 和 Alman 2020 年的结果只比之前的结果提高了 0.00001。

当然,对研究人员来说,最令人兴奋的不仅仅是新纪录本身,该记录并没有持续多久。事实上,这篇论文揭示了一种新的改进途径,而在此之前,这种途径完全没有被注意到。
Le Gall 称,近四十年来,每个人都依赖相同的激光法。随着段然等三位研究者的论文出现,我们可以做得更好。
因此,周任飞参与撰写的 2024 年 1 月的论文改善了这种新方法,进一步减少了隐藏损失。他们又进一步提高了 ω 的上限,使它降低到了 2.371552。

研究者还使用同样的方法来改进矩形(n×m)矩阵的乘法过程,该乘法过程在图论、机器学习和其他领域均有广泛应用。
沿着这些方向取得一些进一步的进展几乎是肯定的,但这是有限度的。2015 年,Le Gall 和两位合作者证明,目前的方法,也就是激光法,再加上 Coppersmith 和 Winograd 的方法,无法得到低于 2.3078 的 ω。
Le Gall 说:「要想进一步改进,就必须在 Coppersmith and Winograd 的原始方法基础上加以改进,而这种方法自 1987 年以来就没有真正改变过。」但到目前为止,还没有人提出更好的方法。也许根本就没有。
周任飞说:「改进 ω 实际上是理解这个问题的一部分。如果我们能很好地理解这个问题,就能设计出更好的算法。不过,人们对这个古老问题的理解还处于非常初级的阶段。」
原文链接:
https://www.quantamagazine.org/new-breakthrough-brings-matrix-multiplication-closer-to-ideal-20240307/
以上是清华姚班本科生连发两作,十年来最大改进:矩阵乘法接近理论最优的详细内容。更多信息请关注PHP中文网其他相关文章!

Apollo Research的一份新报告显示,先进的AI系统的不受检查的内部部署构成了重大风险。 在大型人工智能公司中缺乏监督,普遍存在,允许潜在的灾难性结果

传统测谎仪已经过时了。依靠腕带连接的指针,打印出受试者生命体征和身体反应的测谎仪,在识破谎言方面并不精确。这就是为什么测谎结果通常不被法庭采纳的原因,尽管它曾导致许多无辜者入狱。 相比之下,人工智能是一个强大的数据引擎,其工作原理是全方位观察。这意味着科学家可以通过多种途径将人工智能应用于寻求真相的应用中。 一种方法是像测谎仪一样分析被审问者的生命体征反应,但采用更详细、更精确的比较分析。 另一种方法是利用语言标记来分析人们实际所说的话,并运用逻辑和推理。 俗话说,一个谎言会滋生另一个谎言,最终

航空航天业是创新的先驱,它利用AI应对其最复杂的挑战。 现代航空的越来越复杂性需要AI的自动化和实时智能功能,以提高安全性,降低操作

机器人技术的飞速发展为我们带来了一个引人入胜的案例研究。 来自Noetix的N2机器人重达40多磅,身高3英尺,据说可以后空翻。Unitree公司推出的G1机器人重量约为N2的两倍,身高约4英尺。比赛中还有许多体型更小的类人机器人参赛,甚至还有一款由风扇驱动前进的机器人。 数据解读 这场半程马拉松吸引了超过12,000名观众,但只有21台类人机器人参赛。尽管政府指出参赛机器人赛前进行了“强化训练”,但并非所有机器人均完成了全程比赛。 冠军——由北京类人机器人创新中心研发的Tiangong Ult

人工智能以目前的形式并不是真正智能的。它擅长模仿和完善现有数据。 我们不是在创造人工智能,而是人工推断 - 处理信息的机器,而人类则

一份报告发现,在谷歌相册Android版7.26版本的代码中隐藏了一个更新的界面,每次查看照片时,都会在屏幕底部显示一行新检测到的面孔缩略图。 新的面部缩略图缺少姓名标签,所以我怀疑您需要单独点击它们才能查看有关每个检测到的人员的更多信息。就目前而言,此功能除了谷歌相册已在您的图像中找到这些人之外,不提供任何其他信息。 此功能尚未上线,因此我们不知道谷歌将如何准确地使用它。谷歌可以使用缩略图来加快查找所选人员的更多照片的速度,或者可能用于其他目的,例如选择要编辑的个人。我们拭目以待。 就目前而言

增强者通过教授模型根据人类反馈进行调整来震撼AI的开发。它将监督的学习基金会与基于奖励的更新融合在一起,使其更安全,更准确,真正地帮助

科学家已经广泛研究了人类和更简单的神经网络(如秀丽隐杆线虫中的神经网络),以了解其功能。 但是,出现了一个关键问题:我们如何使自己的神经网络与新颖的AI一起有效地工作


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3汉化版
中文版,非常好用

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 Linux新版
SublimeText3 Linux最新版