李开复旗下AI公司零一万物,又一位大模型选手登场:
90亿参数Yi-9B。
它号称Yi系列中的“理科状元”,“恶补”了代码数学,同时综合能力也没落下。
在一系列类似规模的开源模型(包括Mistral-7B、SOLAR-10.7B、Gemma-7B、DeepSeek-Coder-7B-Base-v1.5等)中,表现最佳。
老规矩,发布即开源,尤其对开发者友好:
Yi-9B(BF 16) 和其量化版 Yi-9B(Int8)都能在消费级显卡上部署。
一块RTX 4090、一块RTX 3090就可以。
深度扩增+多阶段增量训练而成
零一万物的Yi家族此前已经发布了Yi-6B和Yi-34B系列。
这两者都是在3.1T token中英文数据上进行的预训练,Yi-9B则在此基础上,增加了0.8T token继续训练而成。
数据的截止日期是2023年6月。
开头提到,Yi-9B最大的进步在于数学和代码,那么这俩能力究竟如何提升呢?
零一万物介绍:
单靠增加数据量并没法达到预期。
靠的是先增加模型大小,在Yi-6B的基础上增至9B,再进行多阶段数据增量训练。
首先,怎么个模型大小增加法?
一个前提是,团队通过分析发现:
Yi-6B训练得已经很充分,再怎么新增更多token练效果可能也不会往上了,所以考虑扩增它的大小。(下图单位不是TB而是B)
怎么增?答案是深度扩增。
零一万物介绍:
对原模型进行宽度扩增会带来更多的性能损失,通过选择合适的layer对模型进行深度扩增后,新增layer的input/output cosine 越接近1.0,即扩增后的模型性能越能保持原有模型的性能,模型性能损失微弱。
依照此思路,零一万物选择复制Yi-6B相对靠后的16层(12-28 层),组成了48层的Yi-9B。
实验显示,这种方法比用Solar-10.7B模型复制中间的16层(8-24层)性能更优。
其次,怎么个多阶段训练法?
答案是先增加0.4T包含文本和代码的数据,但数据配比与Yi-6B一样。
然后增加另外的0.4T数据,同样包括文本和代码,但重点增加代码和数学数据的比例。
(悟了,就和我们在大模型提问里的诀窍“think step by step”思路一样)
这两步操作完成后,还没完,团队还参考两篇论文(An Empirical Model of Large-Batch Training和Don’t Decay the Learning Rate, Increase the Batch Size)的思路,优化了调参方法。
即从固定的学习率开始,每当模型loss停止下降时就增加batch size,使其下降不中断,让模型学习得更加充分。
最终,Yi-9B实际共包含88亿参数,达成4k上下文长度。
Yi系列中代码和数学能力最强
实测中,零一万物使用greedy decoding的生成方式(即每次选择概率值最大的单词)来进行测试。
参评模型为DeepSeek-Coder、DeepSeek-Math、Mistral-7B、SOLAR-10.7B和Gemma-7B:
(1)DeepSeek-Coder,来自国内的深度求索公司,其33B的指令调优版本人类评估超越GPT-3.5-turbo,7B版本性能则能达到CodeLlama-34B的性能。
DeepSeek-Math则靠7B参数干翻GPT-4,震撼整个开源社区。
(2)SOLAR-10.7B来自韩国的Upstage AI,2023年12月诞生,性能超越Mixtral-8x7B-Instruct。
(3)Mistral-7B则是首个开源MoE大模型,达到甚至超越了Llama 2 70B和GPT-3.5的水平。
(4)Gemma-7B来自谷歌,零一万物指出:
其有效参数量其实和Yi-9B一个等级。
(两者命名准则不一样,前者只用了Non-Embedding参数,后者用的是全部参数量并向上取整)
结果如下。
首先在代码任务上,Yi-9B性能仅次于DeepSeek-Coder-7B,其余四位全部被KO。
在数学能力上,Yi-9B性能仅次于DeepSeek-Math-7B,超越其余四位。
综合能力也不赖。
其性能在尺寸相近的开源模型中最好,超越了其余全部五位选手。
最后,还测了常识和推理能力:
结果是Yi-9B与Mistral-7B、SOLAR-10.7B和Gemma-7B不相上下。
以及语言能力,不仅英文不错,中文也是广受好评:
最最后,看完这些,有网友表示:已经迫不及待想试试了。
还有人则替DeepSeek捏了一把汗:
赶紧加强你们的“比赛”吧。全面主导地位已经没有了==
传送门在此:https://huggingface.co/01-ai/Yi-9B
以上是消费级显卡可用!李开复零一万物发布并开源90亿参数Yi模型,代码数学能力史上最强的详细内容。更多信息请关注PHP中文网其他相关文章!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

Dreamweaver Mac版
视觉化网页开发工具