搜索
首页后端开发Python教程驯服 Python 的 GIL 野兽:驾驭并发性的艺术

驯服 Python 的 GIL 野兽:驾驭并发性的艺术

python、GIL、并发性、多线程、多进程

Python 的全局解释器 (GIL) 是一个内置机制,它确保每次只有一个线程能够执行 Python 字节码。这个锁是为了防止数据损坏,因为它阻止了多个线程同时修改共享数据。

GIL 的限制

虽然 GIL 对于确保数据完整性至关重要,但它对 Python 的并发性也有重大限制:

  • 顺序性: GIL 强制所有线程按顺序执行,限制了 Python 并发程序的并行性。
  • 瓶颈: 当一个线程在 I/O 操作或其他阻塞操作中等待时,GIL 会阻止其他线程执行。这可能会导致任务延迟和性能下降。

克服 GIL 的限制

虽然 GIL 无法完全绕过,但有一些技术可以减轻其对并发性的影响:

1. 多进程

多进程是使用多个操作系统进程而不是 Python 线程来实现并发的。由于每个进程都有自己的 GIL,因此它们可以同时执行而没有任何锁争用:

import multiprocessing

def task(num):
print(f"Process {num}: {num * num}")

if __name__ == "__main__":
processes = [multiprocessing.Process(target=task, args=(i,)) for i in range(4)]
for process in processes:
process.start()
for process in processes:
process.join()

2. 多线程与队列

使用多线程和队列可以实现并行性,同时避免 GIL 争用。线程将任务放入队列,而其他线程从队列中获取任务并执行它们:

import threading
import queue

queue = queue.Queue()

def producer():
for i in range(10):
queue.put(i)

def consumer():
while not queue.empty():
item = queue.get()
print(f"Thread: {item * item}")

threads = [threading.Thread(target=producer), threading.Thread(target=consumer)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()

3. Greenlets

Greenlets 是协程,它们允许您在单个线程中暂停和恢复函数。由于 Greenlets 不受 GIL 的约束,因此它们可以在不发生锁争用的情况下实现并发:

import gevent

def task(num):
print(f"Greenlet {num}: {num * num}")

gevent.joinall([gevent.spawn(task, i) for i in range(4)])

4. C/C++ 扩展

对于需要高性能的并发应用程序,可以编写 C/C++ 扩展并将其与 Python 集成。C/c++ 代码不受 GIL 的影响,因此可以提供更快的并行性:

#include <Python.h>

static PyObject* py_task(PyObject* self, PyObject* args) {
int num;
if (!PyArg_ParseTuple(args, "i", &num)) {
return NULL;
}

// 执行任务
int result = num * num;

return Py_BuildValue("i", result);
}

static PyMethodDef methods[] = {
{"task", py_task, METH_VARARGS, "PerfORM a task in a C extension"},
{NULL, NULL, 0, NULL}
};

static PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"c_extension",
"C extension for parallel task execution",
-1,
methods
};

PyMODINIT_FUNC PyInit_c_extension(void) {
return PyModule_Create(&module);
}

总结

Python 的 GIL 虽然对于保证数据完整性至关重要,但它会限制并发性。通过采用多进程、多线程与队列、Greenlets 或 C/C++ 扩展等策略,您可以克服 GIL 的限制,释放 Python 并发性的全部潜力。不过,在使用这些技术时,需要仔细考虑它们的优点、缺点和适用性。

以上是驯服 Python 的 GIL 野兽:驾驭并发性的艺术的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:编程网。如有侵权,请联系admin@php.cn删除
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具