python 中的全局解释器锁 (GIL) 自其诞生以来一直是一个备受争议的话题。虽然 GIL 确保了 Python 解释器一次只执行一个线程,从而维护内存安全性,但也限制了并发的可能性。本文将探索 GIL 的演变,从其最初的设计到当前的状态和未来方向。
GIL 的起源
GIL 最初是在 Python 1.5 中引入的,目的是防止多线程同时修改同一对象,从而导致数据损坏。当时,Python 主要用于单核计算机,GIL 并不是一个主要的限制因素。
GIL 的限制
随着多核计算机的普及,GIL 的局限性变得明显。由于 GIL 每次只允许一个线程执行,因此并发代码只能在单个内核上运行。对于需要大量并发的应用程序来说,这可能会导致性能问题。
GIL 的替代方案
为了克服 GIL 的限制,已经开发了许多替代方案:
- 多进程: 创建多个 Python 进程,每个进程都有自己的 GIL。这允许真正的并发,但由于进程之间的通信开销,效率可能会较低。
-
第三方库: 如
concurrent.futures
和multiprocessing
,提供了并行和并发执行任务的工具。这些库使用进程池或线程池来管理 GIL,允许在多个内核上执行代码。 - 协程(协同例程): 协程是一种轻量级并发机制,它允许在一个线程内暂停和恢复多个任务。协程不需要 GIL,但它们依赖于手动调度和上下文切换。
Python 3.8 中的 GIL 改进
在 Python 3.8 中,引入了对 GIL 的重大改进,提高了并发性能。这些改进包括:
- 基于事件的 GIL 释放: GIL 现在可以在事件循环事件期间释放,例如 I/O 操作。这允许其他线程在事件循环处理 I/O 操作时执行。
- 自适应 GIL 延迟: GIL 延迟会根据应用程序使用多线程的程度进行调整。在使用较少线程时,GIL 延迟较长,允许更多并发。
Python 3.10 中的 GIL 改进
Python 3.10 引入了对 GIL 的进一步改进,称为 细粒度 GIL。细粒度 GIL 将 GIL 范围缩小到更细小的代码块,允许更精细的并发控制。这对于需要在频繁的原子操作期间进行并发的应用程序特别有益。
未来展望
GIL 的未来仍然不确定。虽然 Python 开发团队致力于持续改进 GIL,但也有可能在未来版本中完全移除它。替代方案,例如多进程和协程,不断成熟,可能会取代 GIL 作为并发 Python 的首选机制。
演示代码
使用 concurrent.futures
进行并行处理:
import concurrent.futures def task(n): return n * n with concurrent.futures.ProcessPoolExecutor() as executor: results = executor.map(task, range(10))
使用 async<strong class="keylink">io</strong>
进行协程:
import asyncio async def task(n): return n * n async def main(): tasks = [task(n) for n in range(10)] results = await asyncio.gather(*tasks) asyncio.run(main())
总结
GIL 在 Python 并发中的演变是一个复杂而充满挑战的问题。随着 Python 对多核处理和高性能计算的日益重视,GIL 的未来将继续受到密切关注。开发人员需要权衡 GIL 的优点和限制,并根据他们的特定应用程序选择适当的并发机制。通过了解 GIL 的演变,开发人员可以做出明智的决策并创建高效且可扩展的并发 Python 应用程序。
以上是GIL 的演变:并发 Python 的不断变化格局的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3汉化版
中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。