搜索
首页后端开发Python教程揭开 Python GIL 的神秘面纱:探索并击碎并发障碍

揭开 Python GIL 的神秘面纱:探索并击碎并发障碍

Mar 02, 2024 pm 04:01 PM
性能优化多线程多进程并发数据访问

揭开 Python GIL 的神秘面纱:探索并击碎并发障碍

Python GIL 的原理

python GIL 是一个互斥,它确保同一时刻只有一个线程执行 Python 字节码。这是为了防止同时修改共享数据而导致数据不一致的情况。然而,GIL 也对多线程程序的并发性和可扩展性产生了限制。

GIL 对并发的影响

由于 GIL,Python 中的线程无法真正并行执行。当一个线程获得 GIL 时,其他线程必须等待,直到它释放 GIL。这可能会导致以下并发问题:

  • 低并发性:由于 GIL 的存在,Python 中的多线程程序不能充分利用多核 CPU 的优势。
  • 死锁:如果两个线程相互等待 GIL,可能会发生死锁。
  • 性能下降:GIL 的竞争会增加程序的开销,从而导致性能下降。

缓解 GIL 挑战的策略

虽然 GIL 无法完全消除,但有几个策略可以缓解其带来的挑战:

1. 多进程

由于 GIL 仅适用于同一进程中的线程,因此使用多进程可以规避 GIL 的限制。在多进程程序中,每个进程都有自己的 Python 解释器和 GIL,因此可以真正并行执行。

演示代码:

import multiprocessing

def worker(num):
print(f"Worker {num}: {os.getpid()}")

if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
pool.map(worker, range(4))

2. Cython

Cython 是一个 Python 扩展语言,它允许将 Python 代码编译为 C 代码。由于 C 代码不受 GIL 的限制,因此 Cython 可以显著提升 Python 中计算密集型任务的性能。

演示代码:

import cython

@cython.boundscheck(False)
@cython.wraparound(False)
def fib(int n):
if n == 0:
return 0
if n == 1:
return 1
return fib(n - 1) + fib(n - 2)

3. asyncio

asyncio 是 Python 中的一个异步框架。它允许协程(一种轻量级线程)并行执行,而无需受 GIL 的限制。协程通过使用事件循环来实现并行性,从而避免了 GIL 的竞争。

演示代码:

import asyncio

async def hello_world():
print("Hello, world!")

async def main():
tasks = [hello_world() for _ in range(4)]
await asyncio.gather(*tasks)

if __name__ == "__main__":
asyncio.run(main())

4. GIL 释放

GIL 释放是一个 Python 内置函数,允许线程在指定的时间段内释放 GIL。这可以帮助减少 GIL 竞争并提高并发性能。

演示代码:

import time

def worker():
with release_gil():
time.sleep(1)

threads = [threading.Thread(target=worker) for _ in range(4)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()

结论

Python GIL 是一个必要的机制,可以防止并发数据访问中的数据不一致。然而,它也对 Python 的并发性能产生了限制。通过了解 GIL 的原理和影响,并采用多进程、Cython、asyncio 或 GIL 释放等策略,开发人员可以在 Python 中创建可扩展、高性能的并发应用程序。

以上是揭开 Python GIL 的神秘面纱:探索并击碎并发障碍的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:编程网。如有侵权,请联系admin@php.cn删除
Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

在Python的上下文中定义'数组”和'列表”。在Python的上下文中定义'数组”和'列表”。Apr 24, 2025 pm 03:41 PM

Inpython,一个“列表” isaversatile,mutableSequencethatCanholdMixedDatateTypes,而“阵列” isamorememory-效率,均质sepersequeSequeSequeReDencErequiringElements.1)

Python列表是可变还是不变的?那Python阵列呢?Python列表是可变还是不变的?那Python阵列呢?Apr 24, 2025 pm 03:37 PM

pythonlistsandArraysareBothable.1)列表Sareflexibleandsupportereceneousdatabutarelessmory-Memory-Empefficity.2)ArraysareMoremoremoremoreMemoremorememorememorememoremorememogeneSdatabutlesserversEversementime,defteringcorcttypecrecttypececeDepeceDyusagetoagetoavoavoiDerrors。

Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。