搜索
首页科技周边人工智能几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

在标准的UNet结构中,long skip connection上的scaling系数几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling一般为1。

然而,在一些著名的扩散模型工作中,比如Imagen, Score-based generative model,以及SR3等等,它们都设置了几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling,并发现这样的设置可以有效加速扩散模型的训练。

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

质疑Scaling然而,Imagen等模型对skip connection的Scaling操作在原论文中并没有具体的分析,只是说这样设置有助于加速扩散模型的训练。

首先,这种经验上的展示,让我们并搞不清楚到底这种设置发挥了什么作用?

另外,我们也不清楚是否只能设置几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling,还是说可以使用其他的常数?

不同位置的skip connection的「地位」一样吗,为什么使用一样的常数?

对此,作者有非常多的问号……

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling图片

理解Scaling

一般来说,和ResNet以及Transformer结构相比,UNet在实际使用中「深度」并不深,不太容易出现其他「深」神经网络结构常见的梯度消失等优化问题。

另外,由于UNet结构的特殊性,浅层的特征通过long skip connection与深层的位置相连接,从而进一步避免了梯度消失等问题。

那么反过来想,这样的结构如果稍不注意,会不会导致梯度过猛、参数(特征)由于更新导致震荡的问题?

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling图片

通过对扩散模型任务在训练过程中特征和参数的可视化,可以发现,确实存在不稳定现象。

参数(特征)的不稳定,影响了梯度,接着又反过来影响参数更新。最终这个过程对性能有较大的不良干扰的风险。因此需要想办法去控制这种不稳定性。

进一步的,对于扩散模型。UNet的输入是一个带噪图像,如果要求模型能从中准确预测出加入的噪声,这需要模型对输入有很强的抵御额外扰动的鲁棒性。

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

论文:https://arxiv.org/abs/2310.13545

代码:https://github.com/sail-sg/ScaleLong

研究人员发现上述这些问题,可以在Long skip connection上进行Scaling来进行统一地缓解。

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

从定理3.1来看,中间层特征的震荡范围(上下界的宽度)正相关于scaling系数的平方和。适当的scaling系数有助于缓解特征不稳定。

不过需要注意的是,如果直接让scaling系数设置为0,确实最佳地缓解了震荡。(手动狗头)

但是UNet退化为无skip的情况的话,不稳定问题是解决了,但是表征能力也没了。这是模型稳定性和表征能力的trade-off。

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling图片

类似地,从参数梯度的角度。定理3.3也揭示了scaling系数对梯度量级的控制。

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling图片

进一步地,定理3.4还揭示了long skip connection上的scaling还可以影响模型对输入扰动的鲁棒上界,提升扩散模型对输入扰动的稳定性。

成为Scaling

通过上述的分析,我们清楚了Long skip connection上进行scaling对稳定模型训练的重要性,几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling也适用于上述的分析。

接下来,我们将分析怎么样的scaling可以有更好的性能,毕竟上述分析只能说明scaling有好处,但不能确定怎么样的scaling最好或者较好。

一种简单的方式是为long skip connection引入可学习的模块来自适应地调整scaling,这种方法称为Learnable Scaling (LS) Method。我们采用类似SENet的结构,即如下所示(此处考虑的是代码整理得非常好的U-ViT结构,赞!)

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling图片

从本文的结果来看,LS确实可以有效地稳定扩散模型的训练!进一步地,我们尝试可视化LS中学习到的系数。

如下图所示,我们会发现这些系数呈现出一种指数下降的趋势(注意这里第一个long skip connection是指连接UNet首尾两端的connection),且第一个系数几乎接近于1,这个现象也很amazing!

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling图片

基于这一系列观察(更多的细节请查阅论文),我们进一步提出了Constant Scaling (CS) Method,即无需可学习参数的:

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

CS策略和最初的使用几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling的scaling操作一样无需额外参数,从而几乎没有太多的额外计算消耗。

虽然CS在大多数时候没有LS在稳定训练上表现好,不过对于已有的几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling策略来说,还是值得一试。

上述CS和LS的实现均非常简洁,仅仅需要若干行代码即可。针对各(hua)式(li)各(hu)样(shao)的UNet结构可能需要对齐一下特征维度。(手动狗头+1)

几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling

最近,一些后续工作,比如FreeU、SCEdit等工作也揭示了skip connection上scaling的重要性,欢迎大家试用和推广。

以上是几行代码稳定UNet ! 中山大学等提出ScaleLong扩散模型:从质疑Scaling到成为Scaling的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
Simpson的悖论如何发现数据中隐藏的趋势? - 分析VidhyaSimpson的悖论如何发现数据中隐藏的趋势? - 分析VidhyaApr 23, 2025 am 09:20 AM

辛普森的悖论:揭示数据中的隐藏趋势 您是否曾经被统计数据误导?辛普森(Simpson)的悖论展示了汇总数据如何掩盖关键趋势,从而揭示了分析多个级别数据的重要性。这个简洁的gui

什么是名义数据? - 分析Vidhya什么是名义数据? - 分析VidhyaApr 23, 2025 am 09:13 AM

介绍 名义数据构成了数据分析的基石,在统计,计算机科学,心理学和营销等各个领域中起着至关重要的作用。 本文深入研究了Nomi的特征,应用和区分

什么是一声提示? - 分析Vidhya什么是一声提示? - 分析VidhyaApr 23, 2025 am 09:12 AM

介绍 在机器学习的动态世界中,使用最小数据有效生成精确的响应至关重要。 一声提示提供了一个强大的解决方案,使AI模型仅使用一个示例执行特定任务

特斯拉的Robovan是2024年的Robotaxi预告片中的隐藏宝石特斯拉的Robovan是2024年的Robotaxi预告片中的隐藏宝石Apr 22, 2025 am 11:48 AM

自2008年以来,我一直倡导这辆共享乘车面包车,即后来被称为“ Robotjitney”,后来是“ Vansit”,这是城市运输的未来。 我预见这些车辆是21世纪的下一代过境解决方案Surpas

Sam俱乐部在AI上押注以消除收据检查并增强零售Sam俱乐部在AI上押注以消除收据检查并增强零售Apr 22, 2025 am 11:29 AM

革新结帐体验 Sam's Club的创新性“ Just Go”系统建立在其现有的AI驱动“扫描和GO”技术的基础上,使会员可以在购物旅行期间通过Sam's Club应用程序进行扫描。

Nvidia的AI Omniverse在GTC 2025扩展Nvidia的AI Omniverse在GTC 2025扩展Apr 22, 2025 am 11:28 AM

NVIDIA在GTC 2025上的增强可预测性和新产品阵容 NVIDIA是AI基础架构的关键参与者,正在专注于提高其客户的可预测性。 这涉及一致的产品交付,达到绩效期望以及

探索Google的功能探索Google的功能Apr 22, 2025 am 11:26 AM

Google的Gemma 2:强大,高效的语言模型 Google的Gemma语言模型家族以效率和性能而庆祝,随着Gemma 2的到来而扩展。此最新版本包括两种模型:270亿个参数VER

下一波《 Genai:与Kirk Borne博士的观点》 -Analytics Vidhya下一波《 Genai:与Kirk Borne博士的观点》 -Analytics VidhyaApr 22, 2025 am 11:21 AM

这一领先的数据剧集以数据科学家,天体物理学家和TEDX演讲者Kirk Borne博士为特色。 Borne博士是大数据,AI和机器学习的著名专家,为当前状态和未来的Traje提供了宝贵的见解

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!