前言
php小编香蕉全面剖析PHP数组底层实现逻辑。PHP中的数组是一种灵活且强大的数据结构,背后的实现逻辑却是相当复杂的。在本文中,我们将深入探讨PHP数组的底层原理,包括数组的内部结构、索引与哈希表的关系,以及数组的增删改查操作的实现方式。通过了解PHP数组的底层实现逻辑,可以帮助开发者更好地理解和利用数组这一重要的数据结构。
数组的结构
一个数组在 PHP 内核里是长什么样的呢?我们可以从 PHP 的源码里看到其结构如下:
<code>// 定义结构体别名为 HashTable typedef struct _zend_array HashTable; struct _zend_array { // <strong class="keylink">GC</strong> 保存引用计数,内存管理相关;本文不涉及 zend_refcounted_h gc; // u 储存辅助信息;本文不涉及 u<strong class="keylink">NIO</strong>n { struct { ZEND_ENDIAN_LOHI_4( zend_uchar flags, zend_uchar nApplyCount, zend_uchar nIteratorsCount, zend_uchar consistency) } v; uint32_t flags; } u; // 用于散列函数 uint32_t nTableMask; // arData 指向储存元素的数组第一个 Bucket,Bucket 为统一的数组元素类型 Bucket *arData; // 已使用 Bucket 数 uint32_t nNumUsed; // 数组内有效元素个数 uint32_t nNumOfElements; // 数组总容量 uint32_t nTableSize; // 内部指针,用于遍历 uint32_t nInternalPointer; // 下一个可用数字<strong class="keylink">索引</strong> zend_long nNextFreeElement; // 析构函数 dtor_func_t pDestructor; };</code>
nNumUsed
和nNumOfElements
的区别:nNumUsed
指的是arData
数组中已使用的Bucket
数,因为数组在删除元素后只是将该元素Bucket
对应值的类型设置为IS_UNDEF
(因为如果每次删除元素都要将数组移动并重新索引太浪费时间),而nNumOfElements
对应的是数组中真正的元素个数。nTableSize
数组的容量,该值为 2 的幂次方。PHP 的数组是不定长度但 C 语言的数组定长的,为了实现 PHP 的不定长数组的功能,采用了「扩容」的机制,就是在每次插入元素的时候判断nTableSize
是否足以储存。如果不足则重新申请 2 倍nTableSize
大小的新数组,并将原数组复制过来(此时正是清除原数组中类型为IS_UNDEF
元素的时机)并且重新索引。nNextFreeElement
保存下一个可用数字索引,例如在 PHP 中$a[] = 1;
这种用法将插入一个索引为nNextFreeElement
的元素,然后nNextFreeElement
自增 1。
_zend_array
这个结构先讲到这里,有些结构体成员的作用在下文会解释,不用紧张O(∩_∩)O哈哈~。下面来看看作为数组成员的 Bucket
结构:
<code>typedef struct _Bucket { // 数组元素的值 zval val; // key 通过 Time 33 <strong class="keylink">算法</strong>计算得到的哈希值或数字索引 zend_ulong h; // 字符键名,数字索引则为 NULL zend_string *key; } Bucket;</code>
数组访问
我们知道 PHP 数组是基于哈希表实现的,而与一般哈希表不同的是 PHP 的数组还实现了元素的有序性,就是插入的元素从内存上来看是连续的而不是乱序的,为了实现这个有序性 PHP 采用了「映射表」技术。下面就通过图例说明我们是如何访问 PHP 数组的元素 :-D。
注意:因为键名到映射表下标经过了两次散列运算,为了区分本文用哈希特指第一次散列,散列即为第二次散列。
由图可知,映射表和数组元素在同一片连续的内存中,映射表是一个长度与存储元素相同的整型数组,它默认值为 -1 ,有效值为 Bucket
数组的下标。而 HashTable->arData
指向的是这片内存中 Bucket
数组的第一个元素。
举个例子 $a['key']
访问数组 $a
中键名为 key
的成员,流程介绍:首先通过 Time 33 算法计算出 key
的哈希值,然后通过散列算法计算出该哈希值对应的映射表下标,因为映射表中保存的值就是 Bucket
数组中的下标值,所以就能获取到 Bucket
数组中对应的元素。
现在我们来聊一下散列算法,就是通过键名的哈希值映射到「映射表」的下标的算法。其实很简单就一行代码:
<code>nIndex = h | ht->nTableMask;</code>
将哈希值和 nTableMask
进行或运算即可得出映射表的下标,其中 nTableMask
数值为 nTableSize
的负数。并且由于 nTableSize
的值为 2 的幂次方,所以 h | ht->nTableMask
的取值范围在 [-nTableSize, -1]
之间,正好在映射表的下标范围内。至于为何不用简单的「取余」运算而是费尽周折的采用「按位或」运算?因为「按位或」运算的速度要比「取余」运算要快很多,我觉得对于这种频繁使用的操作来说,复杂一点的实现带来的时间上的优化是值得的。
散列冲突
不同键名的哈希值通过散列计算得到的「映射表」下标有可能相同,此时便发生了散列冲突。对于这种情况 PHP 使用了「链地址法」解决。下图是访问发生散列冲突的元素的情况:
这看似与第一张图差不多,但我们同样访问 $a['key']
的过程多了一些步骤。首先通过散列运算得出映射表下标为 -2 ,然后访问映射表发现其内容指向 arData
数组下标为 1 的元素。此时我们将该元素的 key
和要访问的键名相比较,发现两者并不相等,则该元素并非我们所想访问的元素,而元素的 val.u2.next
保存的值正是下一个具有相同散列值的元素对应 arData
数组的下标,所以我们可以不断通过 next
的值遍历直到找到键名相同的元素或查找失败。
插入元素
插入元素的函数 _zend_hash_add_or_update_i
,基于 PHP 7.2.9 的代码如下:
<code>static zend_always_inline zval *_zend_hash_add_or_update_i(HashTable *ht, zend_string *key, zval *pData, uint32_t flag ZEND_FILE_LINE_DC) { zend_ulong h; uint32_t nIndex; uint32_t idx; Bucket *p; IS_CONSISTENT(ht); HT_ASSERT_RC1(ht); if (UNEXPECTED(!(ht->u.flags & HASH_FLAG_INITIALIZED))) { // 数组未初始化 // 初始化数组 CHECK_INIT(ht, 0); // 跳转至插入元素段 goto add_to_hash; } else if (ht->u.flags & HASH_FLAG_PACKED) { // 数组为连续数字索引数组 // 转换为关联数组 zend_hash_packed_to_hash(ht); } else if ((flag & HASH_ADD_NEW) == 0) { // 添加新元素 // 查找键名对应的元素 p = zend_hash_find_bucket(ht, key); if (p) { // 若相同键名元素存在 zval *data; if (flag & HASH_ADD) { // 指定 add 操作 if (!(flag & HASH_UPDATE_INDIRECT)) { // 若不允许更新间接类型变量则直接返回 return NULL; } // 确定当前值和新值不同 ZEND_ASSERT(&p->val != pData); // data 指向原数组成员值 data = &p->val; if (Z_TYPE_P(data) == IS_INDIRECT) { // 原数组元素变量类型为间接类型 // 取间接变量对应的变量 data = Z_INDIRECT_P(data); if (Z_TYPE_P(data) != IS_UNDEF) { // 该对应变量存在则直接返回 return NULL; } } else { // 非间接类型直接返回 return NULL; } } else { // 没有指定 add 操作 // 确定当前值和新值不同 ZEND_ASSERT(&p->val != pData); // data 指向原数组元素值 data = &p->val; // 允许更新间接类型变量则 data 指向对应的变量 if ((flag & HASH_UPDATE_INDIRECT) && Z_TYPE_P(data) == IS_INDIRECT) { data = Z_INDIRECT_P(data); } } if (ht->pDestructor) { // 析构函数存在 // 执行析构函数 ht->pDestructor(data); } // 将 pData 的值复制给 data ZVAL_COPY_VALUE(data, pData); return data; } } // 如果哈希表已满,则进行扩容 ZEND_HASH_IF_FULL_DO_RESIZE(ht); add_to_hash: // 数组已使用 Bucket 数 +1 idx = ht->nNumUsed++; // 数组有效元素数目 +1 ht->nNumOfElements++; // 若内部指针无效则指向当前下标 if (ht->nInternalPointer == HT_INVALID_IDX) { ht->nInternalPointer = idx; } zend_hash_iterators_update(ht, HT_INVALID_IDX, idx); // p 为新元素对应的 Bucket p = ht->arData + idx; // 设置键名 p->key = key; if (!ZSTR_IS_INTERNED(key)) { zend_string_addref(key); ht->u.flags &= ~HASH_FLAG_STATIC_KEYS; zend_string_hash_val(key); } // 计算键名的哈希值并赋值给 p p->h = h = ZSTR_H(key); // 将 pData 赋值该 Bucket 的 val ZVAL_COPY_VALUE(&p->val, pData); // 计算映射表下标 nIndex = h | ht->nTableMask; // 解决冲突,将原映射表中的内容赋值给新元素变量值的 u2.next 成员 Z_NEXT(p->val) = HT_HASH(ht, nIndex); // 将映射表中的值设为 idx HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx); return &p->val; }</code>
扩容
前面将数组结构的时候我们有提到扩容,而在插入元素的代码里有这样一个宏 ZEND_HASH_IF_FULL_DO_RESIZE
,这个宏其实就是调用了 zend_hash_do_resize
函数,对数组进行扩容并重新索引。注意:并非每次 Bucket
数组满了都需要扩容,如果 Bucket
数组中 IS_UNDEF
元素的数量占较大比例,就直接将 IS_UNDEF
元素删除并重新索引,以此节省内存。下面我们看看 zend_hash_do_resize
函数:
重新索引的逻辑在 zend_hash_rehash
函数中,代码如下:
总结
嗯哼,本文就到此结束了,因为自身水平原因不能解释的十分详尽清楚。这算是我写过最难写的内容了,写完之后似乎觉得这篇文章就我自己能看明白/(ㄒoㄒ)/~~因为文笔太辣鸡。想起一句话「如果你不能简单地解释一样东西,说明你没真正理解它。」PHP 的源码里有很多细节和实现我都不算熟悉,这篇文章只是一个我的 PHP 底层学习的开篇,希望以后能够写出真正深入浅出的好文章。
以上是全面剖析PHP 数组底层实现逻辑的详细内容。更多信息请关注PHP中文网其他相关文章!

作者:楚怡、凯衡等近日,美团视觉智能部研发了一款致力于工业应用的目标检测框架YOLOv6,能够同时专注于检测的精度和推理效率。在研发过程中,视觉智能部不断进行了探索和优化,同时吸取借鉴了学术界和工业界的一些前沿进展和科研成果。在目标检测权威数据集COCO上的实验结果显示,YOLOv6在检测精度和速度方面均超越其他同体量的算法,同时支持多种不同平台的部署,极大简化工程部署时的适配工作。特此开源,希望能帮助到更多的同学。1.概述YOLOv6是美团视觉智能部研发的一款目标检测框架,致力于工业应用。

5月2日消息,目前大多数AI聊天机器人都需要连接到云端进行处理,即使可以本地运行的也配置要求极高。那么是否有轻量化的、无需联网的聊天机器人呢?一个名为MLCLLM的全新开源项目已在GitHub上线,完全本地运行无需联网,甚至集显老电脑、苹果iPhone手机都能运行。MLCLLM项目介绍称:“MLCLLM是一种通用解决方案,它允许将任何语言模型本地部署在一组不同的硬件后端和本地应用程序上,此外还有一个高效的框架,供每个人进一步优化自己用例的模型性能。一切都在本地运行,无需服务器支持,并通过手机和笔

作为一个技术博主,了不起比较喜欢各种折腾,之前给大家介绍过ChatGPT接入微信,钉钉和知识星球(如果没看过的可以翻翻前面的文章),最近再看开源项目的时候,发现了一个ChatGPTWebUI项目。想着刚好之前没有将ChatGPT接入过WebUI,有了这个开源项目可以拿来使用,真是不错,下面是实操的安装步骤,分享给大家。安装官方在Github的项目文档上提供了很多中的安装方式,包括手动安装,docker部署,以及远程部署等方法,了不起在选择部署方式的时候,一开始为了简单想着

深度推荐模型(DLRMs)已经成为深度学习在互联网公司应用的最重要技术场景,如视频推荐、购物搜索、广告推送等流量变现业务,极大改善了用户体验和业务商业价值。但海量的用户和业务数据,频繁地迭代更新需求,以及高昂的训练成本,都对 DLRM 训练提出了严峻挑战。在 DLRM 中,需要先在嵌入表(EmbeddingBags)中进行查表(lookup),再完成下游计算。嵌入表常常贡献 DLRM 中 99% 以上的内存需求,却只贡献 1% 的计算量。借助于 GPU 片上高速内存(High Bandwidth

自从Midjourney发布v5之后,在生成图像的人物真实程度、手指细节等方面都有了显著改善,并且在prompt理解的准确性、审美多样性和语言理解方面也都取得了进步。相比之下,StableDiffusion虽然免费、开源,但每次都要写一大长串的prompt,想生成高质量的图像全靠多次抽卡。最近StabilityAI的官宣,正在研发的StableDiffusionXL开始面向公众测试,目前可以在Clipdrop平台免费试用。试用链接:https://clipdrop.co/stable-diff

在人类的感官中,一张图片可以将很多体验融合到一起,比如一张海滩图片可以让我们想起海浪的声音、沙子的质地、拂面而来的微风,甚至可以激发创作一首诗的灵感。图像的这种「绑定」(binding)属性通过与自身相关的任何感官体验对齐,为学习视觉特征提供了大量监督来源。理想情况下,对于单个联合嵌入空间,视觉特征应该通过对齐所有感官来学习。然而这需要通过同一组图像来获取所有感官类型和组合的配对数据,显然不可行。最近,很多方法学习与文本、音频等对齐的图像特征。这些方法使用单对模态或者最多几种视觉模态。最终嵌入仅

刚刚,哥伦比亚大学系统生物学助理教授 Mohammed AlQuraishi 在推特上宣布,他们从头训练了一个名为 OpenFold 的模型,该模型是 AlphaFold2 的可训练 PyTorch 复现版本。Mohammed AlQuraishi 还表示,这是第一个大众可用的 AlphaFold2 复现。AlphaFold2 可以周期性地以原子精度预测蛋白质结构,在技术上利用多序列对齐和深度学习算法设计,并结合关于蛋白质结构的物理和生物学知识提升了预测效果。它实现了 2/3 蛋白质结构预测的卓

细粒度图像识别 [1] 是视觉感知学习的重要研究课题,在智能新经济和工业互联网等方面具有巨大应用价值,且在诸多现实场景已有广泛应用…… 鉴于当前领域内尚缺乏该方面的深度学习开源工具库,南京理工大学魏秀参教授团队用时近一年时间,开发、打磨、完成了 Hawkeye——细粒度图像识别深度学习开源工具库,供相关领域研究人员和工程师参考使用。本文是对 Hawkeye 的详细介绍。1.什么是 Hawkeye 库Hawkeye 是一个基于 PyTorch 的细粒度图像识别深度学习工具库,专为相关领域研究人员和


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

Dreamweaver Mac版
视觉化网页开发工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),