搜索
首页科技周边人工智能自动驾驶与轨迹预测看这一篇就够了!

轨迹预测在自动驾驶中承担着重要的角色,自动驾驶轨迹预测是指通过分析车辆行驶过程中的各种数据,预测车辆未来的行驶轨迹。作为自动驾驶的核心模块,轨迹预测的质量对于下游的规划控制至关重要。轨迹预测任务技术栈丰富,需要熟悉自动驾驶动/静态感知、高精地图、车道线、神经网络架构(CNN&GNN&Transformer)技能等,入门难度很大!很多粉丝期望能够尽快上手轨迹预测,少踩坑,今天就为大家盘点下轨迹预测常见的一些问题和入门学习方法!

入门相关知识

1.预习的论文有没有切入顺序?

A:先看survey,problem formulation, deep learning-based methods里的sequential network,graph neural network和Evaluation。

2.行为预测是轨迹预测吗

耦合和行为并不相同,耦合通常指目标车可能采取的动作,例如变道、停车、超车、加速、左转、右转或直行。而轨迹则指具有时间信息的具体未来位置点。

3.请问Argoverse数据集里提到的数据组成中,labels and targets指的是什么呢?labels是指要预测时间段内的ground truth吗

在右边的表格中,OBJECT_TYPE栏目通常代表自动驾驶车辆本身。数据集通常为每个场景指定一个或多个待预测的障碍物,并将这些待预测目标称为target或focal agent。有些数据集还会为每个障碍物提供语义标签,例如车辆、行人或自行车等。

Q2:车辆和行人的数据形式是一样的吗?我的意思是说,比如一个点云点代表行人,几十个点代表车辆?

A:这种轨迹数据集里面其实给的都是物体中心点的xyz坐标,行人和车辆都是

Q3:argo1和argo2的数据集都是只指定了一个被预测的障碍物吧?那在做multi-agent prediction的时候 这两个数据集是怎么用的

argo1只指定了一个障碍物,而argo2却可能指定了多达二十个。然而,即使只指定了一个障碍物,这并不会影响您模型的能力来预测多个障碍物。

4.路径规划一般考虑低速和静态障碍物  轨迹预测结合的作用是??关键snapshot?

A:”预测“自车轨迹当成自车规划轨迹,可以参考uniad

5.轨迹预测对于车辆动力学模型的要求高吗?就是需要数学和汽车理论等来建立一个精准的车辆动力学模型么?

A:nn网络基本不需要哈,rule based的需要懂一些

6. 模模糊糊的新手小白,应该从哪里在着手拓宽一下知识面(还不会代码撰写)

A:先看综述,把思维导图整理出来,例如《Machine Learning for Autonomous Vehicle's Trajectory Prediction: A comprehensive survey, Challenges, and Future Research Directions》这篇综述去看看英文原文

7.预测和决策啥关系捏,为啥我觉得好像预测没那么重要?

A1(stu): 默认预测属于感知吧,或者决策中隐含预测,反正没有预测不行。A2(stu): 决策该规控做,有行为规划,高级一点的就是做交互和博弈,有的公司会有单独的交互博弈组

8.目前头部公司,一般预测是属于感知大模块还是规控大模块?

A:预测是出他车轨迹,规控是出自车轨迹,这俩轨迹还互相影响,所以预测一般放规控。

Q: 一些公开的资料,比如小鹏的感知xnet会同时出预测轨迹,这时候又感觉预测的工作是放在感知大模块下,还是说两个模块都有自己的预测模块,目标不一样?

A:是会相互影响,所以有的地方预测和决策就是一个组。比如自车规划的轨迹意图去挤别的车,他车一般情况是会让道的。所以有些工作会把自车的规划当成他车模型输入的一部分。可以参考下M2I(M2I: From Factored Marginal Trajectory Prediction to Interactive Prediction). 这篇思路差不多,可以了解  PiP: Planning-informed Trajectory Prediction for Autonomous Driving

9.argoverse的这种车道中线地图,在路口里面没有车道线的地方是怎么得到的呀?

A: 人工标注的

10.用轨迹预测写论文的话,哪篇论文的代码可以做baseline?

A: hivt可以做baseline,蛮多人用的

11.现在轨迹预测基本都依赖地图,如果换一个新的地图环境,原模型是否就不适用了,要重新训练吗?

A: 有一定的泛化能力,不需要重新训练效果也还行

12.对多模态输出而言,选择最佳轨迹的时候是根据概率值最大的选吗

A(stu): 选择结果最好的Q2:结果最好是根据什么来判定呢?是根据概率值大小还是根据和gt的距离A: 实际在没有ground truth的情况下,你要取“最好”的轨迹,那只能选择相信预测概率值最大的那条轨迹了Q3: 那有gt的情况下,选择最好轨迹的时候,根据和gt之间的end point或者average都可以是吗A: 嗯嗯,看指标咋定义

轨迹预测基础模块

1.Argoverse数据集里HD-Map怎么用,能结合motion forecast作为输入,构建驾驶场景图吗,异构图又怎么理解?

A:这个课程里都有讲的,可以参照第二章,后续的第四章也会讲.  异构图和同构图的区别:同构图中,node的种类只有一种,一个node和另一个node的连接关系只有一种,例如在社交网络中,可以想象node只有‘人’这一个种类,edge只有‘认识’这一种连接。而人和人要么认识,要么不认识。但是也可能细分有人,点赞,推文。则人和人可能通过认识连接,人和推文可能通过点赞连接,人和人也可能通过点赞同一篇推文连接(meta path)。这里节点、节点之间关系的多样性表达就需要引入异构图了。异构图中,有很多种node。node之间也有很多种连接关系(edge),这些连接关系的组合则种类更多(meta-path), 而这些node之间的关系有轻重之分,不同连接关系也有轻重之分。

2.A-A交互考虑的是哪些车辆与被预测车辆的交互呢?

A:可以选择一定半径范围内的车,也可以考虑K近邻的车,你甚至可以自己提出更高级的启发式邻居筛选策略,甚至有可能可以让模型自己学出来两个车是否是邻居

Q2:还是考虑一定范围内的吧,那半径大小有什么选取的原则吗?另外,选取的这些车辆是在哪个时间步下的呢

A:半径的选择很难有标准答案,这本质上就是在问模型做预测的时候到底需要多远程的信息,有点像在选择卷积核的大小对于第二个问题,我个人的准则是,想要建模哪个时刻下物体之间的交互,就根据哪个时刻下的物体相对位置来选取邻居

Q3:这样的话对于历史时域都要建模吗?不同时间步下在一定范围内的周边车辆也会变化吧,还是说只考虑在当前时刻的周边车辆信息

A:都行啊,看你模型怎么设计

3.老师uniad端到端模型中预测部分存在什么缺陷啊?

A:只看它motion former的操作比较常规,你在很多论文里都会看到类似的SA和CA。现在sota的模型很多都比较重,比如decoder会有循环的refine

A2:做的是marginal prediction不是joint prediction;2. prediction和planning是分开来做的,没有显式考虑ego和周围agent的交互博弈;3.用的是scene-centric representation,没有考虑对称性,效果必拉

Q2:啥是marginal prediction啊

A:具体可以参考scene transformer

Q3:关于第三点,scene centric没有考虑对称性,怎么理解呢

A:建议看HiVT, QCNet, MTR++.当然对于端到端模型来说对称性的设计也不好做就是了

A2:可以理解成输入的是scene的数据,但在网络里会建模成以每个目标为中心视角去看它周边的scene,这样你就在forward里得到了每个目标以它自己为中心的编码,后续可以再考虑这些编码间的交互

自动驾驶与轨迹预测看这一篇就够了!

4. 什么是以agent为中心?

A:每个agent有自己的local region,local region是以这个agent为中心

5.轨迹预测里yaw和heading是混用的吗

自动驾驶与轨迹预测看这一篇就够了!

A:可以理解为车头朝向

6.argoverse地图中的has_traffic_control这个属性具体代表什么意思?

A:其实我也不知道我理解的对不对,我猜是指某个lane是否被红绿灯/stop sign/限速标志等所影响

7. 请问Laplace loss和huber loss 对于轨迹预测而言所存在的优劣势在哪里呢?如果我只预测一条车道线的话

A:两个都试一下,哪个效果好哪个就有优势。Laplace loss要效果好还是有些细节要注意的

Q2:是指参数要调的好吗

A:Laplace loss相比L1 loss其实就是多预测了一个scale参数

Q3:对的 但似乎这个我不知道有啥用 如果只预测一个轨迹的话。感觉像是多余的。我把它理解为不确定性 不知道是否正确

A:如果你从零推导过最小二乘法就会知道,MSE其实是假设了方差为常数的高斯分布的NLL。同理,L1 loss也是假设了方差为常数的Laplace分布的NLL。所以说LaplaceNLL也可以理解为方差非定值的L1 loss。这个方差是模型自己预测出来的。为了使loss更低,模型会给那些拟合得不太好的样本一个比较大的方差,而给拟合得好的样本比较小的方差

Q4:那是不是可以理解为对于非常随机的数据集【轨迹数据存在缺帧 抖动】 就不太适合Laplace 因为模型需要去拟合这个方差?需要数据集质量比较高

A:这个说法我觉得不一定成立。从效果上来看,会鼓励模型优先学习比较容易拟合的样本,再去学习难学习的样本

Q5:还想请问下这句话(Laplace loss要效果好还是有些细节要注意的)如何理解 A:主要是预测scale那里。在模型上,预测location的分支和预测scale的分支要尽量解耦,不要让他们相互干扰。预测scale的分支要保证输出结果>0,一般人会用exp作为激活函数保证非负,但是我发现用ELU +1会更好。然后其实scale的下界最好不要是0,最好让scale>0.01或者>0.1啥的。以上都是个人看法。其实我开源的代码(周梓康大佬的github开源代码)里都有这些细节,不过可能大家不一定注意到。

给出链接:https://github.com/ZikangZhou/QCNet

https://github.com/ZikangZhou/HiVT

8. 有拿VAE做轨迹预测的吗,给个链接!

https://github.com/L1aoXingyu/pytorch-beginner/tree/master/08-AutoEncoder

9. 请问大伙一个问题,就是Polyline到底是啥?另外说polyline由向量Vector组成,这些Vector是相当于节点吗?

A:Polyline就是折线,折线就是一段一段的,每一段都可以看成是一段向量Q2:请问这个折线段和图神经网络的节点之间的边有关系吗?或者说Polyline这个折现向量相当于是图神经网络当中的节点还是边呀?A:一根折线可以理解为一个节点。轨迹预测里面没有明确定义的边,边如何定义取决于你怎么理解这个问题。Q3: VectorNet里面有很多个子图,每个子图下面有很多个Polyline,把Polyline当做向量的话,就相当于把Polyline这个节点变成了向量,相当于将节点进行特征向量化对吗?然后Polyline里面有多个Vector向量,就是相当于是构成这个节点的特征矩阵么?A: 一个地图里有很多条polyline;一个Polyline就是一个子图;一个polyline由很多段比较短的向量组成,每一段向量都是子图上的一个节点

10. 有的论文,像multipath++对于地图两个点就作为一个单元,有的像vectornet是一条线作为一个单元,这两种有什么区别吗?

A: 节点的粒度不同,要说效果的话那得看具体实现;速度的话,显然粒度越粗效率越高Q2:从效果角度看,什么时候选用哪种有没有什么原则?A: 没有原则,都可以尝试

11.有什么可以判断score的平滑性吗? 如果一定要做的话

A: 这个需要你输入是流动的输入比如0-19和1-20帧然后比较两帧之间的对应轨迹的score的差的平方,统计下就可以了

Q2: Thomas老师有哪些指标推荐呢,我目前用一阶导数和二阶导数。但好像不是很明显,绝大多数一阶导和二阶导都集中在0附近。

A: 我感觉连续帧的对应轨迹的score的差值平方就可以了呀,比如你有连续n个输入,求和再除以n。但是scene是实时变化的,发生交互或者从非路口到路口的时候score就应该是突变的

12.hivt里的轨迹没有进行缩放吗,就比如×0.01+10这种。分布尽可能在0附近。我看有的方法就就用了,有的方法就没有。取舍该如何界定?

A:就是把数据标准化归一化呗。可能有点用 但应该不多

13.HiVT里地图的类别属性经过embedding之后为什么和数值属性是相加的,而不是concat?

A:相加和concat区别不大,而对于类别embedding和数值embedding融合来说,实际上完全等价

Q2: 完全等价应该怎么理解?

A: 两者Concat之后再过一层线性层,实际上等价于把数值embedding过一层线性层以及把类别embedding过一层线性层后,两者再相加起来.把类别embedding过一层线性层其实没啥意义,理论上这一层线性层可以跟nn.Embeddding里面的参数融合起来

14.作为用户可能更关心的是,HiVT如果要实际部署的话,最小的硬件要求是多少?

A:我不知道,但根据我了解到的信息,不知道是NV还是哪家车厂是拿HiVT来预测行人的,所以实际部署肯定是可行的

15. 基于occupancy network的预测有什么特别吗?有没有论文推荐?

A:目前基于occupancy的未来预测的方案里面最有前途的应该是这个:https://arxiv.org/abs/2308.01471

16.考虑规划轨迹的预测有什么论文推荐吗?就是预测其他障碍物的时候,考虑自车的规划轨迹?

A:这个可能公开的数据集比较困难,一般不会提供自车的规划轨迹。上古时期有一篇叫做PiP的,港科Haoran Song。我感觉那种做conditional prediction的文章都可以算是你想要的,比如M2I

17.有没有适合预测算法进行性能测试的仿真项目可以学习参考的呢

A(stu):这个论文有讨论:Choose Your Simulator Wisely A Review on Open-source Simulators for Autonomous Driving

18.请问如何估计GPU显存需要多大,如果使用Argoverse数据集的话,怎么算

A:和怎么用有关系,之前跑hivt我1070都可以,现在一般电脑应该都可以

原文链接:https://mp.weixin.qq.com/s/EEkr8g4w0s2zhS_jmczUiA

以上是自动驾驶与轨迹预测看这一篇就够了!的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?Apr 11, 2025 pm 12:13 PM

斯坦福大学以人为本人工智能研究所发布的《2025年人工智能指数报告》对正在进行的人工智能革命进行了很好的概述。让我们用四个简单的概念来解读它:认知(了解正在发生的事情)、欣赏(看到好处)、接纳(面对挑战)和责任(弄清我们的责任)。 认知:人工智能无处不在,并且发展迅速 我们需要敏锐地意识到人工智能发展和传播的速度有多快。人工智能系统正在不断改进,在数学和复杂思维测试中取得了优异的成绩,而就在一年前,它们还在这些测试中惨败。想象一下,人工智能解决复杂的编码问题或研究生水平的科学问题——自2023年

开始使用Meta Llama 3.2 -Analytics Vidhya开始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

AV字节:Meta' llama 3.2,Google的双子座1.5等AV字节:Meta' llama 3.2,Google的双子座1.5等Apr 11, 2025 pm 12:01 PM

本周的AI景观:进步,道德考虑和监管辩论的旋风。 OpenAI,Google,Meta和Microsoft等主要参与者已经释放了一系列更新,从开创性的新车型到LE的关键转变

与机器交谈的人类成本:聊天机器人真的可以在乎吗?与机器交谈的人类成本:聊天机器人真的可以在乎吗?Apr 11, 2025 pm 12:00 PM

连接的舒适幻想:我们在与AI的关系中真的在蓬勃发展吗? 这个问题挑战了麻省理工学院媒体实验室“用AI(AHA)”研讨会的乐观语气。事件展示了加油

了解Python的Scipy图书馆了解Python的Scipy图书馆Apr 11, 2025 am 11:57 AM

介绍 想象一下,您是科学家或工程师解决复杂问题 - 微分方程,优化挑战或傅立叶分析。 Python的易用性和图形功能很有吸引力,但是这些任务需要强大的工具

3种运行Llama 3.2的方法-Analytics Vidhya3种运行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式联运AI强力 Meta的最新多模式模型Llama 3.2代表了AI的重大进步,具有增强的语言理解力,提高的准确性和出色的文本生成能力。 它的能力t

使用dagster自动化数据质量检查使用dagster自动化数据质量检查Apr 11, 2025 am 11:44 AM

数据质量保证:与Dagster自动检查和良好期望 保持高数据质量对于数据驱动的业务至关重要。 随着数据量和源的增加,手动质量控制变得效率低下,容易出现错误。

大型机在人工智能时代有角色吗?大型机在人工智能时代有角色吗?Apr 11, 2025 am 11:42 AM

大型机:AI革命的无名英雄 虽然服务器在通用应用程序上表现出色并处理多个客户端,但大型机是专为关键任务任务而建立的。 这些功能强大的系统经常在Heavil中找到

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境