bitsCN.com
MySQL不同存储引擎和不同分区字段对于查询的影响
前提:每种表类型准备了200万条相同的数据。
表一 InnoDB & PARTITION BY RANGE (id)
Sql代码
CREATE TABLE `customer_innodb_id` (
`id` int(11) NOT NULL,
`email` varchar(64) NOT NULL,
`name` varchar(32) NOT NULL,
`password` varchar(32) NOT NULL,
`phone` varchar(13) DEFAULT NULL,
`birth` date DEFAULT NULL,
`sex` int(1) DEFAULT NULL,
`avatar` blob,
`address` varchar(64) DEFAULT NULL,
`regtime` datetime DEFAULT NULL,
`lastip` varchar(15) DEFAULT NULL,
`modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (100000) ENGINE = InnoDB,
PARTITION p1 VALUES LESS THAN (500000) ENGINE = InnoDB,
PARTITION p2 VALUES LESS THAN (1000000) ENGINE = InnoDB,
PARTITION p3 VALUES LESS THAN (1500000) ENGINE = InnoDB,
PARTITION p4 VALUES LESS THAN (2000000) ENGINE = InnoDB,
PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;
查询结果:
Sql代码
mysql> select count(*) from customer_innodb_id where id > 50000 and id
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (1.19 sec)
mysql> select count(*) from customer_innodb_id where id > 50000 and id
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (0.28 sec)
mysql> select count(*) from customer_innodb_id where regtime > '1995-01-01 00:00
:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (4.74 sec)
mysql> select count(*) from customer_innodb_id where regtime > '1995-01-01 00:00
:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (5.28 sec)
表二 InnoDB & PARTITION BY RANGE (year)
Sql代码
CREATE TABLE `customer_innodb_year` (
`id` int(11) NOT NULL,
`email` varchar(64) NOT NULL,
`name` varchar(32) NOT NULL,
`password` varchar(32) NOT NULL,
`phone` varchar(13) DEFAULT NULL,
`birth` date DEFAULT NULL,
`sex` int(1) DEFAULT NULL,
`avatar` blob,
`address` varchar(64) DEFAULT NULL,
`regtime` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',
`lastip` varchar(15) DEFAULT NULL,
`modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`,`regtime`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
/*!50100 PARTITION BY RANGE (YEAR(regtime ))
(PARTITION p0 VALUES LESS THAN (1996) ENGINE = InnoDB,
PARTITION p1 VALUES LESS THAN (1997) ENGINE = InnoDB,
PARTITION p2 VALUES LESS THAN (1998) ENGINE = InnoDB,
PARTITION p3 VALUES LESS THAN (1999) ENGINE = InnoDB,
PARTITION p4 VALUES LESS THAN (2000) ENGINE = InnoDB,
PARTITION p5 VALUES LESS THAN (2001) ENGINE = InnoDB,
PARTITION p6 VALUES LESS THAN (2002) ENGINE = InnoDB,
PARTITION p7 VALUES LESS THAN (2003) ENGINE = InnoDB,
PARTITION p8 VALUES LESS THAN (2004) ENGINE = InnoDB,
PARTITION p9 VALUES LESS THAN (2005) ENGINE = InnoDB,
PARTITION p10 VALUES LESS THAN (2006) ENGINE = InnoDB,
PARTITION p11 VALUES LESS THAN (2007) ENGINE = InnoDB,
PARTITION p12 VALUES LESS THAN (2008) ENGINE = InnoDB,
PARTITION p13 VALUES LESS THAN (2009) ENGINE = InnoDB,
PARTITION p14 VALUES LESS THAN (2010) ENGINE = InnoDB,
PARTITION p15 VALUES LESS THAN (2011) ENGINE = InnoDB,
PARTITION p16 VALUES LESS THAN (2012) ENGINE = InnoDB,
PARTITION p17 VALUES LESS THAN (2013) ENGINE = InnoDB,
PARTITION p18 VALUES LESS THAN (2014) ENGINE = InnoDB,
PARTITION p19 VALUES LESS THAN MAXVALUE ENGINE = InnoDB) */;
查询结果:
Sql代码
mysql> select count(*) from customer_innodb_year where id > 50000 and id
0;
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (5.31 sec)
mysql> select count(*) from customer_innodb_year where id > 50000 and id
0;
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (0.31 sec)
mysql> select count(*) from customer_innodb_year where regtime > '1995-01-01 00:
00:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (0.47 sec)
mysql> select count(*) from customer_innodb_year where regtime > '1995-01-01 00:
00:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (0.19 sec)
表三 MyISAM & PARTITION BY RANGE (id)
Sql代码
CREATE TABLE `customer_myisam_id` (
`id` int(11) NOT NULL,
`email` varchar(64) NOT NULL,
`name` varchar(32) NOT NULL,
`password` varchar(32) NOT NULL,
`phone` varchar(13) DEFAULT NULL,
`birth` date DEFAULT NULL,
`sex` int(1) DEFAULT NULL,
`avatar` blob,
`address` varchar(64) DEFAULT NULL,
`regtime` datetime DEFAULT NULL,
`lastip` varchar(15) DEFAULT NULL,
`modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8
/*!50100 PARTITION BY RANGE (id)
(PARTITION p0 VALUES LESS THAN (100000) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (500000) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (1000000) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (1500000) ENGINE = MyISAM,
PARTITION p4 VALUES LESS THAN (2000000) ENGINE = MyISAM,
PARTITION p5 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */;
查询结果:
Sql代码
mysql> select count(*) from customer_myisam_id where id > 50000 and id
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (0.59 sec)
mysql> select count(*) from customer_myisam_id where id > 50000 and id
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (0.16 sec)
mysql> select count(*) from customer_myisam_id where regtime > '1995-01-01 00:00
:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (34.17 sec)
mysql> select count(*) from customer_myisam_id where regtime > '1995-01-01 00:00
:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (34.06 sec)
表四 MyISAM & PARTITION BY RANGE (year)
Sql代码
CREATE TABLE `customer_myisam_year` (
`id` int(11) NOT NULL,
`email` varchar(64) NOT NULL,
`name` varchar(32) NOT NULL,
`password` varchar(32) NOT NULL,
`phone` varchar(13) DEFAULT NULL,
`birth` date DEFAULT NULL,
`sex` int(1) DEFAULT NULL,
`avatar` blob,
`address` varchar(64) DEFAULT NULL,
`regtime` datetime NOT NULL DEFAULT '0000-00-00 00:00:00',
`lastip` varchar(15) DEFAULT NULL,
`modifytime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`,`regtime`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8
/*!50100 PARTITION BY RANGE (YEAR(regtime ))
(PARTITION p0 VALUES LESS THAN (1996) ENGINE = MyISAM,
PARTITION p1 VALUES LESS THAN (1997) ENGINE = MyISAM,
PARTITION p2 VALUES LESS THAN (1998) ENGINE = MyISAM,
PARTITION p3 VALUES LESS THAN (1999) ENGINE = MyISAM,
PARTITION p4 VALUES LESS THAN (2000) ENGINE = MyISAM,
PARTITION p5 VALUES LESS THAN (2001) ENGINE = MyISAM,
PARTITION p6 VALUES LESS THAN (2002) ENGINE = MyISAM,
PARTITION p7 VALUES LESS THAN (2003) ENGINE = MyISAM,
PARTITION p8 VALUES LESS THAN (2004) ENGINE = MyISAM,
PARTITION p9 VALUES LESS THAN (2005) ENGINE = MyISAM,
PARTITION p10 VALUES LESS THAN (2006) ENGINE = MyISAM,
PARTITION p11 VALUES LESS THAN (2007) ENGINE = MyISAM,
PARTITION p12 VALUES LESS THAN (2008) ENGINE = MyISAM,
PARTITION p13 VALUES LESS THAN (2009) ENGINE = MyISAM,
PARTITION p14 VALUES LESS THAN (2010) ENGINE = MyISAM,
PARTITION p15 VALUES LESS THAN (2011) ENGINE = MyISAM,
PARTITION p16 VALUES LESS THAN (2012) ENGINE = MyISAM,
PARTITION p17 VALUES LESS THAN (2013) ENGINE = MyISAM,
PARTITION p18 VALUES LESS THAN (2014) ENGINE = MyISAM,
PARTITION p19 VALUES LESS THAN MAXVALUE ENGINE = MyISAM) */;
查询结果:
Sql代码
mysql> select count(*) from customer_myisam_year where id > 50000 and id
0;
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (2.08 sec)
mysql> select count(*) from customer_myisam_year where id > 50000 and id
0;
+----------+
| count(*) |
+----------+
| 449999 |
+----------+
1 row in set (0.17 sec)
mysql> select count(*) from customer_myisam_year where regtime > '1995-01-01 00:
00:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (0.56 sec)
mysql> select count(*) from customer_myisam_year where regtime > '1995-01-01 00:
00:00' and regtime
+----------+
| count(*) |
+----------+
| 199349 |
+----------+
1 row in set (0.13 sec)
结果汇总
序号 存储引擎 分区函数 查询条件 一次查询(sec) 二次查询(sec)
1 InnoDB id id 1.19 0.28
2 InnoDB id regtime 4.74 5.28
3 InnoDB year id 5.31 0.31
4 InnoDB year regtime 0.47 0.19
5 MyISAM id id 0.59 0.16
6 MyISAM id regtime 34.17 34.06
7 MyISAM year id 2.08 0.17
8 MyISAM year regtime 0.56 0.13
总结
1、对于按照时间区间来查询的,建议采用按照时间来分区,减少查询范围。
2、MyISAM性能总体占优,但是不支持事务处理、外键约束等。
bitsCN.com

TograntpermissionstonewMySQLusers,followthesesteps:1)AccessMySQLasauserwithsufficientprivileges,2)CreateanewuserwiththeCREATEUSERcommand,3)UsetheGRANTcommandtospecifypermissionslikeSELECT,INSERT,UPDATE,orALLPRIVILEGESonspecificdatabasesortables,and4)

toadduserInmysqleffectection andsecrely,theTheSepsps:1)USEtheCreateuserStattoDaneWuser,指定thehostandastrongpassword.2)GrantNectalRevileSaryPrivilegesSustate,usiveleanttatement,AdheringTotheTeprinciplelastPrevilegege.3)

toaddanewuserwithcomplexpermissionsinmysql,loldtheSesteps:1)创建eTheEserWithCreateuser'newuser'newuser'@''localhost'Indedify'pa ssword';。2)GrantreadAccesstoalltablesin'mydatabase'withGrantSelectOnMyDatabase.to'newuser'@'localhost';。3)GrantWriteAccessto'

MySQL中的字符串数据类型包括CHAR、VARCHAR、BINARY、VARBINARY、BLOB、TEXT,排序规则(Collations)决定了字符串的比较和排序方式。1.CHAR适合固定长度字符串,VARCHAR适合可变长度字符串。2.BINARY和VARBINARY用于二进制数据,BLOB和TEXT用于大对象数据。3.排序规则如utf8mb4_unicode_ci忽略大小写,适合用户名;utf8mb4_bin区分大小写,适合需要精确比较的字段。

最佳的MySQLVARCHAR列长度选择应基于数据分析、考虑未来增长、评估性能影响及字符集需求。1)分析数据以确定典型长度;2)预留未来扩展空间;3)注意大长度对性能的影响;4)考虑字符集对存储的影响。通过这些步骤,可以优化数据库的效率和扩展性。

mysqlblobshavelimits:tinyblob(255bytes),blob(65,535 bytes),中间布洛布(16,777,215个比例),andlongblob(4,294,967,967,295 bytes).tousebl观察性:1)考虑performance impactsandSandStorelargeblobsextern; 2)管理backbackupsandreplication carecration; 3)usepathsinst

自动化在MySQL中创建用户的最佳工具和技术包括:1.MySQLWorkbench,适用于小型到中型环境,易于使用但资源消耗大;2.Ansible,适用于多服务器环境,简单但学习曲线陡峭;3.自定义Python脚本,灵活但需确保脚本安全性;4.Puppet和Chef,适用于大规模环境,复杂但可扩展。选择时需考虑规模、学习曲线和集成需求。

是的,YouCansearchInIdeAblobInMysqlusingsPecificteChniques.1)转换theblobtoautf-8StringWithConvertFunctionWithConvertFunctionandSearchusiseLike.2)forCompresseBlyblobs,useuncompresseblobs,useuncompressbeforeconversion.3)acpperformance impperformance imperformance imptactsanddataEccoding.4)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 Linux新版
SublimeText3 Linux最新版

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。