搜索
首页后端开发Python教程Python数据分析:数据探索和预测

Python数据分析:数据探索和预测

导言

数据科学已日益兴起,并已广泛用于各个行业。 pandas 是一种用于数据操纵和建模的开源库,是数据科学家的宝贵工具。在这篇文章中,我们将探索如何使用 Pandas 进行数据探索和建模。

数据探索

数据探索是数据科学过程中至关重要的第一步,它使我们能对数据有一个直观的认识。使用 Pandas,我们可以加载数据并查看其内容。

import numpy as np
import numpy as np
import matplotlib.pyplot as plts
data = pd.read_csv("data.csv")

表格式输出提供数据的透视,而图表则可帮助我们可视化数据以寻找趋势和异常值。

data.head()
data.hist()
plt.show()

数据预处理

在建模数据前,通常需要进行数据预处理以确保数据的完整性和一致性。这可能涉及清除缺失值、标准化特征或将类别数据转换为可供模型训练的数字形式。

data.dropna(inplace=True)
data = (data - data.min()) / (data.max() - data.min())
data["cateGory"] = data["category].astype("category")

数据建模

一旦数据已准备好,我们就可以开始建模。 Pandas 内置对用于常见统计建模的各种库的支持,例如线性回归、逻辑回归和决策树。

from sklearn.linear_model import LoGISticRegression
model = LogisticRegression()
model.fit(data[["feature1", "feature2"]], data["target"])

模型评估

训练完模型后,下一步是评估其性能。我们可以使用诸如混淆矩阵、准确率、召回率 F1-score 等评价指标。

import sklearn.matrics as metics
predictions = model.predict(x_test)
print(metices.confusion_matrix(y_test, predictions))
print(metices.accuracy_score(y_test, predictions))

总结

使用 Pandas 进行数据探索和建模是数据科学流程的基石。 Pandas 的直观语法和内置对统计建模库的支持使其非常适合快速高效地进行数据科学。随着我们在数据科学领域的不断进步,保持对 Pandas 的熟练将使我们驾驭数据驱的洞察力和推动决策的不断变化格局中受益匪浅。

以上是Python数据分析:数据探索和预测的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:编程网。如有侵权,请联系admin@php.cn删除
了解差异:用于循环和python中的循环了解差异:用于循环和python中的循环May 16, 2025 am 12:17 AM

theDifferenceBetweewneaforoopandawhileLoopInpythonisthataThataThataThataThataThataThataNumberoFiterationSiskNownInAdvance,而leleawhileLoopisusedWhenaconDitionNeedneedneedneedNeedStobeCheckedStobeCheckedStobeCheckedStobeCheckedStobeceDrepeTysepectients.peatsiveSectlyStheStobeCeptellyWithnumberofiterations.1)forloopsareAceareIdealForitoringercortersence

Python循环控制:对于vs -a -a比较Python循环控制:对于vs -a -a比较May 16, 2025 am 12:16 AM

在Python中,for循环适用于已知迭代次数的情况,而while循环适合未知迭代次数且需要更多控制的情况。1)for循环适用于遍历序列,如列表、字符串等,代码简洁且Pythonic。2)while循环在需要根据条件控制循环或等待用户输入时更合适,但需注意避免无限循环。3)性能上,for循环略快,但差异通常不大。选择合适的循环类型可以提高代码的效率和可读性。

如何在Python中结合两个列表:5种简单的方法如何在Python中结合两个列表:5种简单的方法May 16, 2025 am 12:16 AM

在Python中,可以通过五种方法合并列表:1)使用 运算符,简单直观,适用于小列表;2)使用extend()方法,直接修改原列表,适用于需要频繁更新的列表;3)使用列表解析式,简洁且可对元素进行操作;4)使用itertools.chain()函数,内存高效,适合大数据集;5)使用*运算符和zip()函数,适用于需要配对元素的场景。每种方法都有其特定用途和优缺点,选择时应考虑项目需求和性能。

循环时循环:python语法,用例和示例循环时循环:python语法,用例和示例May 16, 2025 am 12:14 AM

foroopsare whenthenemberofiterationsisknown,而whileLoopsareUseduntilacTitionismet.1)ForloopSareIdealForeSequencesLikeLists,UsingSyntaxLike'forfruitinFruitinFruitinFruitIts:print(fruit)'。2)'

python串联列表列表python串联列表列表May 16, 2025 am 12:08 AM

toConcateNateAlistofListsInpython,useextend,listComprehensions,itertools.Chain,orrecursiveFunctions.1)ExtendMethodStraightForwardButverBose.2)listComprechencomprechensionsareconconconciseandemandeconeandefforlargerdatasets.3)

Python中的合并列表:选择正确的方法Python中的合并列表:选择正确的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入两个列表?如何在Python 3中加入两个列表?May 14, 2025 am 12:09 AM

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

Python串联列表字符串Python串联列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)