在Linux设备模型中,Bus(总线)是一类特殊的设备,它是连接处理器和其他设备之间的通道(channel)。为了方便设备模型的实现,内核规定,系统中的每个设备都要连接在一个Bus上,这个Bus可以是一个内部Bus、虚拟Bus或者Platform Bus。
内核通过结构体struct bus_type,对Bus进行抽象,它是在include/linux/device.h中定义的。本文将围绕该结构体,描述Linux内核中Bus的功能,以及相关的实现逻辑。最后,我们会简单介绍一些标准的Bus(如Platform),并介绍它们的用途和使用场景。
按照惯例,我们在介绍功能之前先介绍一些核心数据结构。对于Bus模块而言,核心数据结构是结构体struct bus_type,此外还有一个与子系统相关的结构体,我们也将一并介绍。
1: /* inlcude/linux/device.h, line 93 */ 2: struct bus_type { 3: const char *name; 4: const char *dev_name; 5: struct device *dev_root; 6: struct bus_attribute *bus_attrs; 7: struct device_attribute *dev_attrs; 8: struct driver_attribute *drv_attrs; 9: 10: int (*match)(struct device *dev, struct device_driver *drv); 11: int (*uevent)(struct device *dev, struct kobj_uevent_env *env); 12: int (*probe)(struct device *dev); 13: int (*remove)(struct device *dev); 14: void (*shutdown)(struct device *dev); 15: 16: int (*suspend)(struct device *dev, pm_message_t state); 17: int (*resume)(struct device *dev); 18: 19: const struct dev_pm_ops *pm; 20: 21: struct iommu_ops *iommu_ops; 22: 23: struct subsys_private *p; 24: struct lock_class_key lock_key; 25: };
“
name,该bus的名称,会在sysfs中以目录的形式存在,如platform bus在sysfs中表现为”/sys/bus/platform”。
dev_name,该名称和”Linux设备模型(5)_device和device driver”所讲述的struct device结构中的init_name有关。对有些设备而言(例如批量化的USB设备),设计者根本就懒得为它起名字的,而内核也支持这种懒惰,允许将设备的名字留空。这样当设备注册到内核后,设备模型的核心逻辑就会用”bus->dev_name+device ID”的形式,为这样的设备生成一个名称。
bus_attrs、dev_attrs、drv_attrs,一些默认的attribute,可以在bus、device或者device_driver添加到内核时,自动为它们添加相应的attribute。
dev_root,根据内核的注释,dev_root设备为bus的默认父设备(Default device to use as the parent),但在内核实际实现中,只和一个叫sub system的功能有关,随后会介绍。
match,一个由具体的bus driver实现的回调函数。当任何属于该Bus的device或者device_driver添加到内核时,内核都会调用该接口,如果新加的device或device_driver匹配上了自己的另一半的话,该接口要返回非零值,此时Bus模块的核心逻辑就会执行后续的处理。
uevent,一个由具体的bus driver实现的回调函数。当任何属于该Bus的device,发生添加、移除或者其它动作时,Bus模块的核心逻辑就会调用该接口,以便bus driver能够修改环境变量。
probe、remove,这两个回调函数,和device_driver中的非常类似,但它们的存在是非常有意义的。可以想象一下,如果需要probe(其实就是初始化)指定的device话,需要保证该device所在的bus是被初始化过、确保能正确工作的。这就要就在执行device_driver的probe前,先执行它的bus的probe。remove的过程相反。
注1:并不是所有的bus都需要probe和remove接口的,因为对有些bus来说(例如platform bus),它本身就是一个虚拟的总线,无所谓初始化,直接就能使用,因此这些bus的driver就可以将这两个回调函数留空。shutdown、suspend、resume,和probe、remove的原理类似,电源管理相关的实现,暂不说明。
pm,电源管理相关的逻辑,暂不说明。
iommu_ops,暂不说明。
p,一个struct subsys_private类型的指针,后面我们会用一个小节说明。
”
该结构和device_driver中的struct driver_private类似,在”Linux设备模型(5)_device和device driver”章节中有提到它,但没有详细说明。
要说明subsys_private的功能,让我们先看一下该结构的定义:
1: /* drivers/base/base.h, line 28 */ 2: struct subsys_private { 3: struct kset subsys; 4: struct kset *devices_kset; 5: struct list_head interfaces; 6: struct mutex mutex; 7: 8: struct kset *drivers_kset; 9: struct klist klist_devices; 10: struct klist klist_drivers; 11: struct blocking_notifier_head bus_notifier; 12: unsigned int drivers_autoprobe:1; 13: struct bus_type *bus; 14: 15: struct kset glue_dirs; 16: struct class *class; 17: };
看到结构内部的字段,就清晰多了,没事不要乱起名字嘛!什么subsys啊,看的晕晕的!不过还是试着先理解一下为什么起名为subsys吧:
按理说,这个结构就是集合了一些bus模块需要使用的私有数据,例如kset啦、klist啦等等,命名为bus_private会好点(就像device_driver模块一样)。不过为什么内核没这么做呢?看看include/linux/device.h中的struct class结构(我们会在下一篇文章中介绍class)就知道了,因为class结构中也包含了一个一模一样的struct subsys_private指针,看来class和bus很相似啊。
想到这里,就好理解了,无论是bus,还是class,还是我们会在后面看到的一些虚拟的子系统,它都构成了一个“子系统(sub-system)”,该子系统会包含形形色色的device或device_driver,就像一个独立的王国一样,存在于内核中。而这些子系统的表现形式,就是/sys/bus(或/sys/class,或其它)目录下面的子目录,每一个子目录,都是一个子系统(如/sys/bus/spi/)。
好了,我们回过头来看一下struct subsys_private中各个字段的解释:
“
subsys、devices_kset、drivers_kset是三个kset,由”Linux设备模型(2)_Kobject”中对kset的描述可知,kset是一个特殊的kobject,用来集合相似的kobject,它在sysfs中也会以目录的形式体现。其中subsys,代表了本bus(如/sys/bus/spi),它下面可以包含其它的kset或者其它的kobject;devices_kset和drivers_kset则是bus下面的两个kset(如/sys/bus/spi/devices和/sys/bus/spi/drivers),分别包括本bus下所有的device和device_driver。
interface是一个list head,用于保存该bus下所有的interface。有关interface的概念后面会详细介绍。
klist_devices和klist_drivers是两个链表,分别保存了本bus下所有的device和device_driver的指针,以方便查找。
drivers_autoprobe,用于控制该bus下的drivers或者device是否自动probe,”Linux设备模型(5)_device和device driver”中有提到。
bus和class指针,分别保存上层的bus或者class指针。
”
根据上面的核心数据结构,可以总结出bus模块的功能包括:
bus的注册是由bus_register接口实现的,该接口的原型是在include/linux/device.h中声明的,并在drivers/base/bus.c中实现,其原型如下:
1: /* include/linux/device.h, line 118 */ 2: extern int __must_check bus_register(struct bus_type *bus);
“
该功能的执行逻辑如下:
- 为bus_type中struct subsys_private类型的指针分配空间,并更新priv->bus和bus->p两个指针为正确的值
- 初始化priv->subsys.kobj的name、kset、ktype等字段,启动name就是该bus的name(它会体现在sysfs中),kset和ktype由bus模块实现,分别为bus_kset和bus_ktype
- 调用kset_register将priv->subsys注册到内核中,该接口同时会向sysfs中添加对应的目录(如/sys/bus/spi)
- 调用bus_create_file向bus目录下添加一个uevent attribute(如/sys/bus/spi/uevent)
- 调用kset_create_and_add分别向内核添加devices和device_drivers kset,同时会体现在sysfs中
- 初始化priv指针中的mutex、klist_devices和klist_drivers等变量
- 调用add_probe_files接口,在bus下添加drivers_probe和drivers_autoprobe两个attribute(如/sys/bus/spi/drivers_probe和/sys/bus/spi/drivers_autoprobe),其中drivers_probe允许用户空间程序主动出发指定bus下的device_driver的probe动作,而drivers_autoprobe控制是否在device或device_driver添加到内核时,自动执行probe
- 调用bus_add_attrs,添加由bus_attrs指针定义的bus的默认attribute,这些attributes最终会体现在/sys/bus/xxx目录下
”
我们有在”Linux设备模型(5)_device和device driver”中讲过,内核提供了device_register和driver_register两个接口,供各个driver模块使用。而这两个接口的核心逻辑,是通过bus模块的bus_add_device和bus_add_driver实现的,下面我们看看这两个接口的处理逻辑。
这两个接口都是在drivers/base/base.h中声明,在drivers/base/bus.c中实现,其原型为:
1: /* drivers/base/base.h, line 106 */ 2: extern int bus_add_device(struct device *dev); 3: 4: /* drivers/base/base.h, line 110 */ 5: extern int bus_add_driver(struct device_driver *drv);
“
bus_add_device的处理逻辑:
调用内部的device_add_attrs接口,将由bus->dev_attrs指针定义的默认attribute添加到内核中,它们会体现在/sys/devices/xxx/xxx_device/目录中
调用sysfs_create_link接口,将该device在sysfs中的目录,链接到该bus的devices目录下,例如:
xxx# ls /sys/bus/spi/devices/spi1.0 -l
lrwxrwxrwx root root 2014-04-11 10:46 spi1.0 -> ../../../devices/platform/s3c64xx-spi.1/spi_master/spi1/spi1.0
其中/sys/devices/…/spi1.0,为该device在sysfs中真正的位置,而为了方便管理,内核在该设备所在的bus的xxx_bus/devices目录中,创建了一个符号链接调用sysfs_create_link接口,在该设备的sysfs目录中(如/sys/devices/platform/alarm/)中,创建一个指向该设备所在bus目录的链接,取名为subsystem,例如:
xxx # ls /sys/devices/platform/alarm/subsystem -l
lrwxrwxrwx root root 2014-04-11 10:28 subsystem -> ../../../bus/platform最后,毫无疑问,要把该设备指针保存在bus->priv->klist_devices中
bus_add_driver的处理逻辑:
- 为该driver的struct driver_private指针(priv)分配空间,并初始化其中的priv->klist_devices、priv->driver、priv->kobj.kset等变量,同时将该指针保存在device_driver的p处
- 将driver的kset(priv->kobj.kset)设置为bus的drivers kset(bus->p->drivers_kset),这就意味着所有driver的kobject都位于bus->p->drivers_kset之下(寄/sys/bus/xxx/drivers目录下)
- 以driver的名字为参数,调用kobject_init_and_add接口,在sysfs中注册driver的kobject,体现在/sys/bus/xxx/drivers/目录下,如/sys/bus/spi/drivers/spidev
- 将该driver保存在bus的klist_drivers链表中,并根据drivers_autoprobe的值,选择是否调用driver_attach进行probe
- 调用driver_create_file接口,在sysfs的该driver的目录下,创建uevent attribute
- 调用driver_add_attrs接口,在sysfs的该driver的目录下,创建由bus->drv_attrs指针定义的默认attribute
- 同时根据suppress_bind_attrs标志,决定是否在sysfs的该driver的目录下,创建bind和unbind attribute(具体可参考”Linux设备模型(5)_device和device driver”中的介绍)
”
我们在”Linux设备模型(5)_device和device driver”中,我们已经介绍过driver的probe时机及过程,其中大部分的逻辑会依赖bus模块的实现,主要为bus_probe_device和driver_attach接口。同样,这两个接口都是在drivers/base/base.h中声明,在drivers/base/bus.c中实现。
这两个结构的行为类似,逻辑也很简单,既:搜索所在的bus,比对是否有同名的device_driver(或device),如果有并且该设备没有绑定Driver(注:这一点很重要,通过它,可以使同一个Driver,驱动相同名称的多个设备,后续在Platform设备的描述中会提及)则调用device_driver的probe接口。
在旧的Linux内核版本中(以蜗蜗使用的linux2.6.23版本的内核为例),sysfs下所有的顶层目录(包括一些二级目录)都是以调用subsystem_register接口,以sub-system的形式注册到内核的,如:
“
/sys/bus/
/sys/devices/
/sys/devices/system/
/sys/block
/sys/kernel/
/sys/slab/
…
”
那时的subsystem_register的实现很简单,就是调用kset_register,创建一个kset。我们知道,kset就是一堆kobject的集合,并会在sysfs中以目录的形式呈现出来。
在新版本的内核中(如“Linux内核分析”系列文章所参考的linux3.10.29),subsystem的实现有了很大变化,例如:去掉了subsystem_register接口(但为了兼容/sys/device/system子系统,在drivers/base/bus.c中,增加了一个subsys_register的内部接口,用于实现相应的功能)。根据这些变化,现在注册subsystem有两种方式:
方式一,在各自的初始化函数中,调用kset_create_and_add接口,创建对应的子系统,包括:
其中bus子系统就是本文所讲的Bus模块,而其它的,我们会在后续的文章中陆续讲述。这个方式和旧版本内核使用kset_register接口的方式基本一样。
方式二,在bus模块中,利用subsys_register接口,封装出两个API:subsys_system_register和subsys_virtual_register,分别用于注册system设备(/sys/devices/system/)和virtual设备(/sys/devices/virtual/)。 而该方式和方式一的区别是:它不仅仅创建了sysfs中的目录,同时会注册同名的bus和device。
在Linux内核中,有三种比较特殊的bus(或者是子系统),分别是system bus、virtual bus和platform bus。它们并不是一个实际存在的bus(像USB、I2C等),而是为了方便设备模型的抽象,而虚构的。
system bus是旧版内核提出的概念,用于抽象系统设备(如CPU、Timer等等)。而新版内核认为它是个坏点子,因为任何设备都应归属于一个普通的子系统(New subsystems should use plain subsystems, drivers/base/bus.c, line 1264),所以就把它抛弃了(不建议再使用,它的存在只为兼容旧有的实现)。
virtaul bus是一个比较新的bus,主要用来抽象那些虚拟设备,所谓的虚拟设备,是指不是真实的硬件设备,而是用软件模拟出来的设备,例如虚拟机中使用的虚拟的网络设备(有关该bus的描述,可参考该链接处的解释:https://lwn.net/Articles/326540/)。
platform bus就比较普通,它主要抽象集成在CPU(SOC)中的各种设备。这些设备直接和CPU连接,通过总线寻址和中断的方式,和CPU交互信息。
我们会在后续的文章中,进一步分析这些特殊的bus,这里就暂时不详细描述了。
4.3 subsys interface
subsys interface是一个很奇怪的东西,除非有一个例子,否则很难理解。代码中是这样注释的:
“
Interfaces usually represent a specific functionality of a subsystem/class of devices.
”
字面上理解,它抽象了bus下所有设备的一些特定功能。
kernel使用struct subsys_interface结构抽象subsys interface,并提供了subsys_interface_register/subsys_interface_unregister用于注册/注销subsys interface,bus下所有的interface都挂载在struct subsys_private变量的“interface”链表上(具体可参考2.2小节的描述)。struct subsys_interface的定义如下:
1. /** 2. \* struct subsys_interface - interfaces to device functions 3. \* @name: name of the device function 4. \* @subsys: subsytem of the devices to attach to 5. \* @node: the list of functions registered at the subsystem 6. \* @add_dev: device hookup to device function handler 7. \* @remove_dev: device hookup to device function handler 8. * 9. \* Simple interfaces attached to a subsystem. Multiple interfaces can 10. \* attach to a subsystem and its devices. Unlike drivers, they do not 11. \* exclusively claim or control devices. Interfaces usually represent 12. \* a specific functionality of a subsystem/class of devices. 13. */ 14. struct subsys_interface { 15. const char *name; 16. struct bus_type *subsys; 17. struct list_head node; 18. int (*add_dev)(struct device *dev, struct subsys_interface *sif); 19. int (*remove_dev)(struct device *dev, struct subsys_interface *sif); 20. };
“
name,interface的名称。
subsys,interface所属的bus。
node,用于将interface挂到bus中。
add_dev/remove_dev,两个回调函数,subsys interface的核心功能。当bus下有设备增加或者删除的时候,bus core会调用它下面所有subsys interface的add_dev或者remove_dev回调。设计者可以在这两个回调函数中实现所需功能,例如绑定该“specific functionality”所对应的driver,等等。
”
subsys interface的实现逻辑比较简单,这里不再详细描述了,具体可参考“drivers/base/bus.c”中相应的代码。另外,后续分析cpufreq framework的时候,会遇到使用subsys interface的例子,到时候我们再进一步理解它的现实意义。
以上是详解Linux设备模型(6)_Bus的详细内容。更多信息请关注PHP中文网其他相关文章!