首页 >后端开发 >Python教程 >如何基于其他 DataFrame 行过滤器创建列?

如何基于其他 DataFrame 行过滤器创建列?

WBOY
WBOY转载
2024-02-09 13:30:04567浏览

如何基于其他 DataFrame 行过滤器创建列?

问题内容

我有一个名为“hourly_data”的 lazyframe,其中包含一个名为“time”的每小时日期时间列。 我还有一个名为“future_periods”的 dataframe,其中包含两个日期时间列,称为“start”(未来周期的开始日期时间)和“end”(未来周期的结束时间)。重要的是,这些未来时期并不重叠。

我想为 hourly_data lazyframe 创建一个名为“period”的列,它应该有一个 int 值,该值基于哪个周期(future_periods dataframe 行,如果有 10 个周期,则从 0 到 9)时间列值hourly_data 的值介于 future_periods 的开始列值和结束列值之间。

我尝试执行以下操作:

periods = pl.series(range(future_periods.height))
hourly_data = hourly_data.with_columns(
    (
        pl.when(((future_periods.get_column('start') <= pl.col('time')) & (pl.col('time') <= future_periods.get_column('end'))).any())
        .then(periods.filter(pl.series((future_periods.get_column('start') <= pl.col('real_time')) & (pl.col('real_time') <= future_periods.get_column('end')))).to_list()[0])
        .otherwise(none)
    ).alias('period')
)

但这给了我错误:typeerror:使用 values 参数的不支持类型“expr”调用系列构造函数

我想要实现的目标: 输入:

hourly_data:
┌────────────────────┐
│ time               │
│ ---                │
│ datetime           │
╞════════════════════╡
│ 2024-01-01 00:00:00│
│ 2024-01-01 01:00:00│
│ 2024-01-01 02:00:00│
│         ...        │
│ 2024-03-31 23:00:00│
│ 2024-04-01 00:00:00│
│ 2024-04-01 01:00:00│
│         ...        │
│ 2024-06-01 00:00:00│
└────────────────────┘
future_periods:
┌─────────────────────────┬───────────────────────┐
│ start                   ┆ end                   │
│ ---                     ┆ ---                   │
│ datetime                ┆ datetime              │
╞═════════════════════════╪═══════════════════════╡
│ 2024-01-01 00:00:00     ┆ 2024-01-31 23:00:00   │
│ 2024-02-01 00:00:00     ┆ 2024-02-28 23:00:00   │
│ 2024-03-01 00:00:00     ┆ 2024-03-31 23:00:00   │
│ 2024-04-01 00:00:00     ┆ 2024-05-31 23:00:00   │
└─────────────────────────┴───────────────────────┘

输出:

hourly_data:
┌─────────────────────────┬────────┐
│ time                    ┆ period │
│ ---                     ┆ ---    │
│ datetime                ┆ int    │
╞═════════════════════════╪════════╡
│ 2024-01-01 00:00:00     ┆ 0      │
│ 2024-01-01 01:00:00     ┆ 0      │
│ 2024-01-01 02:00:00     ┆ 0      │
│          ...            ┆ ...    │
│ 2024-03-31 23:00:00     ┆ 2      │
│ 2024-04-01 00:00:00     ┆ 3      │
│ 2024-04-01 01:00:00     ┆ 3      │
│          ...            ┆ ...    │
│ 2024-06-01 00:00:00     ┆ None   │
└─────────────────────────┴────────┘

正确答案


一般来说,它是不等式连接,或者在您的情况下,在范围内连接。这是执行此操作的一种方法。让我们首先创建一些示例数据:

hourly_data = pl.dataframe({
    "time": ['2023-01-01 14:00','2023-01-02 09:00', '2023-01-04 11:00']
}).lazy()

future_periods = pl.dataframe({
    "id": [1,2,3,4],
    "start": ['2023-01-01 11:00','2023-01-02 10:00', '2023-01-03 15:00', '2023-01-04 10:00'],
    "end": ['2023-01-01 16:00','2023-01-02 11:00', '2023-01-03 18:00', '2023-01-04 15:00']
}).lazy()

┌──────────────────┬──────┐
│ time             ┆ data │
│ ---              ┆ ---  │
│ str              ┆ str  │
╞══════════════════╪══════╡
│ 2023-01-01 14:00 ┆ a    │
│ 2023-01-02 09:00 ┆ b    │
│ 2023-01-04 11:00 ┆ c    │
└──────────────────┴──────┘ 
┌─────┬──────────────────┬──────────────────┐
│ id  ┆ start            ┆ end              │
│ --- ┆ ---              ┆ ---              │
│ i64 ┆ str              ┆ str              │
╞═════╪══════════════════╪══════════════════╡
│ 1   ┆ 2023-01-01 11:00 ┆ 2023-01-01 16:00 │
│ 2   ┆ 2023-01-02 10:00 ┆ 2023-01-02 11:00 │
│ 3   ┆ 2023-01-03 15:00 ┆ 2023-01-03 18:00 │
│ 4   ┆ 2023-01-04 10:00 ┆ 2023-01-04 15:00 │
└─────┴──────────────────┴──────────────────┘

现在,您可以分两步完成 - 首先,计算 time 和未来时段 id 之间的链接:

time_periods = (
   hourly_data
       .join(future_periods, how="cross")
       .filter(
           pl.col("time") > pl.col("start"),
           pl.col("time") < pl.col("end")
        ).select(["time","id"])
)

┌──────────────────┬─────┐
│ time             ┆ id  │
│ ---              ┆ --- │
│ str              ┆ i64 │
╞══════════════════╪═════╡
│ 2023-01-01 14:00 ┆ 1   │
│ 2023-01-04 11:00 ┆ 4   │
└──────────────────┴─────┘

然后您可以将其与原始数据框连接起来:

hourly_data.join(time_periods, how="left", on="time").collect()

┌──────────────────┬──────┬──────┐
│ time             ┆ data ┆ id   │
│ ---              ┆ ---  ┆ ---  │
│ str              ┆ str  ┆ i64  │
╞══════════════════╪══════╪══════╡
│ 2023-01-01 14:00 ┆ a    ┆ 1    │
│ 2023-01-02 09:00 ┆ b    ┆ null │
│ 2023-01-04 11:00 ┆ c    ┆ 4    │
└──────────────────┴──────┴──────┘

执行此操作的另一种方法可能是使用 duckdb 感谢 与 polars 集成

import duckdb
import polars as pl

duckdb.sql("""
    select
        h.time, h.data, p.id
    from hourly_data as h
        left join future_periods as p on
            p.start < h.time and
            p.end > h.time
""").pl()

┌──────────────────┬──────┬──────┐
│ time             ┆ data ┆ id   │
│ ---              ┆ ---  ┆ ---  │
│ str              ┆ str  ┆ i64  │
╞══════════════════╪══════╪══════╡
│ 2023-01-01 14:00 ┆ A    ┆ 1    │
│ 2023-01-04 11:00 ┆ C    ┆ 4    │
│ 2023-01-02 09:00 ┆ B    ┆ null │
└──────────────────┴──────┴──────┘

以上是如何基于其他 DataFrame 行过滤器创建列?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:stackoverflow.com。如有侵权,请联系admin@php.cn删除