首页 >后端开发 >Golang >我的神经网络(从头开始)训练,让它离目标更远

我的神经网络(从头开始)训练,让它离目标更远

王林
王林转载
2024-02-06 10:36:091131浏览

我的神经网络(从头开始)训练,让它离目标更远

问题内容

这是我第一次创建神经网络,我决定在 golang 中创建它,这通常不是用于此目的的语言,但是我想从头开始很好地理解它们如何工作仅基本库。

该程序的目标是训练一个神经网络,使其能够将两个数字(1-10)相加。为此,我创建了一个名为 rawai(我能想到的最好的名字)的神经网络类,并给它一个 1 个输入层(大小为 2 的数组)、1 个隐藏层(大小为 2 的数组)和 1 个输出层(大小为 1) 的数组。

权重有2个2d数组,一个是ih(hidden的输入)[2,2],一个是ho,[2,1]。

下面是启动 ai、训练和测试 ai 的代码。您将看到我使用过的几个调试语句,并且非 golang 或其包的任何其他函数将显示在我的 rawai 类的以下代码中。这是由我的 main 函数调用的:

func additionneuralnetworktest() {
    nn := newrawai(2, 2, 1, 1/math.pow(10, 15))
    fmt.printf("weights ih before: %v\n\nweights ho after: %v\n", nn.weightsih, nn.weightsho)
    //train neural network
    //
    for epoch := 0; epoch < 10000000; epoch++ {
        for i := 0; i <= 10; i++ {
            for j := 0; j <= 10; j++ {
                inputs := make([]float64, 2)
                targets := make([]float64, 1)
                inputs[0] = float64(i)
                inputs[1] = float64(j)
                targets[0] = float64(i) + float64(j)
                nn.train(inputs, targets)
                if epoch%20000 == 0 && i == 5 && j == 5 {
                    fmt.printf("[training] [epoch %d] %f + %f = %f targets[%f]\n", epoch, inputs[0], inputs[1], nn.outputlayer[0], targets[0])
                }

            }

        }
    }
    // test neural network
    a := rand.intn(10) + 1
    b := rand.intn(10) + 1
    inputs := make([]float64, 2)
    inputs[0] = float64(a)
    inputs[1] = float64(b)
    prediction := nn.feedforward(inputs)[0]
    fmt.printf("%d + %d = %f\n", a, b, prediction)
    fmt.printf("weights ih: %v\n\nweights ho: %v\n", nn.weightsih, nn.weightsho)

}

以下是 rawai 文件中的所有代码:

type RawAI struct {
    InputLayer   []float64   `json:"input_layer"`
    HiddenLayer  []float64   `json:"hidden_layer"`
    OutputLayer  []float64   `json:"output_layer"`
    WeightsIH    [][]float64 `json:"weights_ih"`
    WeightsHO    [][]float64 `json:"weights_ho"`
    LearningRate float64     `json:"learning_rate"`
}

func NewRawAI(inputSize, hiddenSize, outputSize int, learningRate float64) *RawAI {
    nn := RawAI{
        InputLayer:   make([]float64, inputSize),
        HiddenLayer:  make([]float64, hiddenSize),
        OutputLayer:  make([]float64, outputSize),
        WeightsIH:    randomMatrix(inputSize, hiddenSize),
        WeightsHO:    randomMatrix(hiddenSize, outputSize),
        LearningRate: learningRate,
    }
    return &nn
}
func (nn *RawAI) FeedForward(inputs []float64) []float64 {
    // Set input layer
    for i := 0; i < len(inputs); i++ {
        nn.InputLayer[i] = inputs[i]
    }

    // Compute hidden layer
    for i := 0; i < len(nn.HiddenLayer); i++ {
        sum := 0.0
        for j := 0; j < len(nn.InputLayer); j++ {
            sum += nn.InputLayer[j] * nn.WeightsIH[j][i]
        }
        nn.HiddenLayer[i] = sum
        if math.IsNaN(sum) {
            panic(fmt.Sprintf("Sum is NaN on Hidden Layer:\nInput Layer: %v\nHidden Layer: %v\nWeights IH: %v\n", nn.InputLayer, nn.HiddenLayer, nn.WeightsIH))
        }

    }

    // Compute output layer
    for k := 0; k < len(nn.OutputLayer); k++ {
        sum := 0.0
        for j := 0; j < len(nn.HiddenLayer); j++ {
            sum += nn.HiddenLayer[j] * nn.WeightsHO[j][k]
        }
        nn.OutputLayer[k] = sum
        if math.IsNaN(sum) {
            panic(fmt.Sprintf("Sum is NaN on Output Layer:\n Model: %v\n", nn))
        }

    }

    return nn.OutputLayer
}
func (nn *RawAI) Train(inputs []float64, targets []float64) {
    nn.FeedForward(inputs)

    // Compute output layer error
    outputErrors := make([]float64, len(targets))
    for k := 0; k < len(targets); k++ {
        outputErrors[k] = targets[k] - nn.OutputLayer[k]
    }

    // Compute hidden layer error
    hiddenErrors := make([]float64, len(nn.HiddenLayer))
    for j := 0; j < len(nn.HiddenLayer); j++ {
        errorSum := 0.0
        for k := 0; k < len(nn.OutputLayer); k++ {
            errorSum += outputErrors[k] * nn.WeightsHO[j][k]
        }
        hiddenErrors[j] = errorSum * sigmoidDerivative(nn.HiddenLayer[j])
        if math.IsInf(math.Abs(hiddenErrors[j]), 1) {
            //Find out why
            fmt.Printf("Hidden Error is Infinite:\nTargets:%v\nOutputLayer:%v\n\n", targets, nn.OutputLayer)
        }
    }

    // Update weights
    for j := 0; j < len(nn.HiddenLayer); j++ {
        for k := 0; k < len(nn.OutputLayer); k++ {
            delta := nn.LearningRate * outputErrors[k] * nn.HiddenLayer[j]
            nn.WeightsHO[j][k] += delta
        }
    }
    for i := 0; i < len(nn.InputLayer); i++ {
        for j := 0; j < len(nn.HiddenLayer); j++ {
            delta := nn.LearningRate * hiddenErrors[j] * nn.InputLayer[i]
            nn.WeightsIH[i][j] += delta
            if math.IsNaN(delta) {
                fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i]))
            }
            if math.IsNaN(nn.WeightsIH[i][j]) {
                fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i]))
            }
        }
    }

}
func (nn *RawAI) ExportWeights(filename string) error {
    weightsJson, err := json.Marshal(nn)
    if err != nil {
        return err
    }
    err = ioutil.WriteFile(filename, weightsJson, 0644)
    if err != nil {
        return err
    }
    return nil
}
func (nn *RawAI) ImportWeights(filename string) error {
    weightsJson, err := ioutil.ReadFile(filename)
    if err != nil {
        return err
    }
    err = json.Unmarshal(weightsJson, nn)
    if err != nil {
        return err
    }
    return nil
}

//RawAI Tools:
func randomMatrix(rows, cols int) [][]float64 {
    matrix := make([][]float64, rows)
    for i := 0; i < rows; i++ {
        matrix[i] = make([]float64, cols)
        for j := 0; j < cols; j++ {
            matrix[i][j] = 1.0
        }
    }
    return matrix
}
func sigmoid(x float64) float64 {
    return 1.0 / (1.0 + exp(-x))
}
func sigmoidDerivative(x float64) float64 {
    return x * (1.0 - x)
}

func exp(x float64) float64 {
    return 1.0 + x + (x*x)/2.0 + (x*x*x)/6.0 + (x*x*x*x)/24.0
}

输出的例子是这样的: 正如您所看到的,它慢慢地远离目标并继续这样做。 经过询问、谷歌搜索和搜索这个网站后,我找不到我的错误所在,所以我决定问这个问题。


正确答案


我认为您使用的是 均方误差 并在微分后忘记了 -

所以改变:

outputerrors[k] =  (targets[k] - nn.outputlayer[k])

致:

outputErrors[k] = -(targets[k] - nn.OutputLayer[k])

以上是我的神经网络(从头开始)训练,让它离目标更远的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:stackoverflow.com。如有侵权,请联系admin@php.cn删除