这是我第一次创建神经网络,我决定在 golang 中创建它,这通常不是用于此目的的语言,但是我想从头开始很好地理解它们如何工作仅基本库。
该程序的目标是训练一个神经网络,使其能够将两个数字(1-10)相加。为此,我创建了一个名为 rawai(我能想到的最好的名字)的神经网络类,并给它一个 1 个输入层(大小为 2 的数组)、1 个隐藏层(大小为 2 的数组)和 1 个输出层(大小为 1) 的数组。
权重有2个2d数组,一个是ih(hidden的输入)[2,2],一个是ho,[2,1]。
下面是启动 ai、训练和测试 ai 的代码。您将看到我使用过的几个调试语句,并且非 golang 或其包的任何其他函数将显示在我的 rawai 类的以下代码中。这是由我的 main 函数调用的:
func additionneuralnetworktest() { nn := newrawai(2, 2, 1, 1/math.pow(10, 15)) fmt.printf("weights ih before: %v\n\nweights ho after: %v\n", nn.weightsih, nn.weightsho) //train neural network // for epoch := 0; epoch < 10000000; epoch++ { for i := 0; i <= 10; i++ { for j := 0; j <= 10; j++ { inputs := make([]float64, 2) targets := make([]float64, 1) inputs[0] = float64(i) inputs[1] = float64(j) targets[0] = float64(i) + float64(j) nn.train(inputs, targets) if epoch%20000 == 0 && i == 5 && j == 5 { fmt.printf("[training] [epoch %d] %f + %f = %f targets[%f]\n", epoch, inputs[0], inputs[1], nn.outputlayer[0], targets[0]) } } } } // test neural network a := rand.intn(10) + 1 b := rand.intn(10) + 1 inputs := make([]float64, 2) inputs[0] = float64(a) inputs[1] = float64(b) prediction := nn.feedforward(inputs)[0] fmt.printf("%d + %d = %f\n", a, b, prediction) fmt.printf("weights ih: %v\n\nweights ho: %v\n", nn.weightsih, nn.weightsho) }
以下是 rawai 文件中的所有代码:
type RawAI struct { InputLayer []float64 `json:"input_layer"` HiddenLayer []float64 `json:"hidden_layer"` OutputLayer []float64 `json:"output_layer"` WeightsIH [][]float64 `json:"weights_ih"` WeightsHO [][]float64 `json:"weights_ho"` LearningRate float64 `json:"learning_rate"` } func NewRawAI(inputSize, hiddenSize, outputSize int, learningRate float64) *RawAI { nn := RawAI{ InputLayer: make([]float64, inputSize), HiddenLayer: make([]float64, hiddenSize), OutputLayer: make([]float64, outputSize), WeightsIH: randomMatrix(inputSize, hiddenSize), WeightsHO: randomMatrix(hiddenSize, outputSize), LearningRate: learningRate, } return &nn } func (nn *RawAI) FeedForward(inputs []float64) []float64 { // Set input layer for i := 0; i < len(inputs); i++ { nn.InputLayer[i] = inputs[i] } // Compute hidden layer for i := 0; i < len(nn.HiddenLayer); i++ { sum := 0.0 for j := 0; j < len(nn.InputLayer); j++ { sum += nn.InputLayer[j] * nn.WeightsIH[j][i] } nn.HiddenLayer[i] = sum if math.IsNaN(sum) { panic(fmt.Sprintf("Sum is NaN on Hidden Layer:\nInput Layer: %v\nHidden Layer: %v\nWeights IH: %v\n", nn.InputLayer, nn.HiddenLayer, nn.WeightsIH)) } } // Compute output layer for k := 0; k < len(nn.OutputLayer); k++ { sum := 0.0 for j := 0; j < len(nn.HiddenLayer); j++ { sum += nn.HiddenLayer[j] * nn.WeightsHO[j][k] } nn.OutputLayer[k] = sum if math.IsNaN(sum) { panic(fmt.Sprintf("Sum is NaN on Output Layer:\n Model: %v\n", nn)) } } return nn.OutputLayer } func (nn *RawAI) Train(inputs []float64, targets []float64) { nn.FeedForward(inputs) // Compute output layer error outputErrors := make([]float64, len(targets)) for k := 0; k < len(targets); k++ { outputErrors[k] = targets[k] - nn.OutputLayer[k] } // Compute hidden layer error hiddenErrors := make([]float64, len(nn.HiddenLayer)) for j := 0; j < len(nn.HiddenLayer); j++ { errorSum := 0.0 for k := 0; k < len(nn.OutputLayer); k++ { errorSum += outputErrors[k] * nn.WeightsHO[j][k] } hiddenErrors[j] = errorSum * sigmoidDerivative(nn.HiddenLayer[j]) if math.IsInf(math.Abs(hiddenErrors[j]), 1) { //Find out why fmt.Printf("Hidden Error is Infinite:\nTargets:%v\nOutputLayer:%v\n\n", targets, nn.OutputLayer) } } // Update weights for j := 0; j < len(nn.HiddenLayer); j++ { for k := 0; k < len(nn.OutputLayer); k++ { delta := nn.LearningRate * outputErrors[k] * nn.HiddenLayer[j] nn.WeightsHO[j][k] += delta } } for i := 0; i < len(nn.InputLayer); i++ { for j := 0; j < len(nn.HiddenLayer); j++ { delta := nn.LearningRate * hiddenErrors[j] * nn.InputLayer[i] nn.WeightsIH[i][j] += delta if math.IsNaN(delta) { fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i])) } if math.IsNaN(nn.WeightsIH[i][j]) { fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i])) } } } } func (nn *RawAI) ExportWeights(filename string) error { weightsJson, err := json.Marshal(nn) if err != nil { return err } err = ioutil.WriteFile(filename, weightsJson, 0644) if err != nil { return err } return nil } func (nn *RawAI) ImportWeights(filename string) error { weightsJson, err := ioutil.ReadFile(filename) if err != nil { return err } err = json.Unmarshal(weightsJson, nn) if err != nil { return err } return nil } //RawAI Tools: func randomMatrix(rows, cols int) [][]float64 { matrix := make([][]float64, rows) for i := 0; i < rows; i++ { matrix[i] = make([]float64, cols) for j := 0; j < cols; j++ { matrix[i][j] = 1.0 } } return matrix } func sigmoid(x float64) float64 { return 1.0 / (1.0 + exp(-x)) } func sigmoidDerivative(x float64) float64 { return x * (1.0 - x) } func exp(x float64) float64 { return 1.0 + x + (x*x)/2.0 + (x*x*x)/6.0 + (x*x*x*x)/24.0 }
输出的例子是这样的: 正如您所看到的,它慢慢地远离目标并继续这样做。 经过询问、谷歌搜索和搜索这个网站后,我找不到我的错误所在,所以我决定问这个问题。
正确答案
我认为您使用的是 均方误差
并在微分后忘记了 -
。
所以改变:
outputerrors[k] = (targets[k] - nn.outputlayer[k])
致:
outputErrors[k] = -(targets[k] - nn.OutputLayer[k])
以上是我的神经网络(从头开始)训练,让它离目标更远的详细内容。更多信息请关注PHP中文网其他相关文章!

Golang更适合高并发任务,而Python在灵活性上更有优势。1.Golang通过goroutine和channel高效处理并发。2.Python依赖threading和asyncio,受GIL影响,但提供多种并发方式。选择应基于具体需求。

Golang和C 在性能上的差异主要体现在内存管理、编译优化和运行时效率等方面。1)Golang的垃圾回收机制方便但可能影响性能,2)C 的手动内存管理和编译器优化在递归计算中表现更为高效。

selectgolangforhighpperformanceandcorrency,ifealforBackendServicesSandNetwork程序; selectpypypythonforrapiddevelopment,dataScience和machinelearningDuetoitsverserverserverserversator versator anderticality andextility andextentensivelibraries。

Golang和Python各有优势:Golang适合高性能和并发编程,Python适用于数据科学和Web开发。 Golang以其并发模型和高效性能着称,Python则以简洁语法和丰富库生态系统着称。

Golang和Python分别在哪些方面更易用和学习曲线更平缓?Golang更适合高并发和高性能需求,学习曲线对有C语言背景的开发者较平缓。Python更适合数据科学和快速原型设计,学习曲线对初学者非常平缓。

Golang和C 在性能竞赛中的表现各有优势:1)Golang适合高并发和快速开发,2)C 提供更高性能和细粒度控制。选择应基于项目需求和团队技术栈。

Golang适合快速开发和并发编程,而C 更适合需要极致性能和底层控制的项目。1)Golang的并发模型通过goroutine和channel简化并发编程。2)C 的模板编程提供泛型代码和性能优化。3)Golang的垃圾回收方便但可能影响性能,C 的内存管理复杂但控制精细。

GoimpactsdevelopmentPositationalityThroughSpeed,效率和模拟性。1)速度:gocompilesquicklyandrunseff,ifealforlargeprojects.2)效率:效率:ITScomprehenSevestAndArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdEcceSteral Depentencies,增强开发的简单性:3)SimpleflovelmentIcties:3)简单性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

Atom编辑器mac版下载
最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器