搜索
首页后端开发Python教程如何使用 Django 的 ORM 使用 .update() 方法更新 JsonField 中多个键的值?

如何使用 Django 的 ORM 使用 .update() 方法更新 JsonField 中多个键的值?

问题内容

我有一个模型字段,我正在尝试使用 django 的 .update() 方法进行更新。该字段是一个 jsonfield。我通常会在这个领域保存一本字典。例如{"test": "是", "prod": "否"}

这是模型:

class question(models.model):
    # {"test": "yes", "prod": "no"}
    extra_data = models.jsonfield(default=dict, null=true, blank=true)

我可以使用此查询更新字典内的键(顺便说一句,效果很好):

Question.filter(id="123").update(meta_data=Func(
                        F("extra_data"),
                        Value(["test"]),
                        Value("no", JSONField()),
                        function="jsonb_set",
                    ))

现在的问题是,有没有办法可以使用 .update() 一次更新多个密钥(在我自己的情况下是两个),如上面的查询所示?

我想使用 .update() 方法而不是 .save() 方法而不是 .save() 来实现此目的,这样我就可以避免调用 post_save 信号函数。


正确答案


免责声明:它看起来会很难看。

我过去曾这样做过,尽管是使用纯 sql,而不是使用 django。这个想法是递归调用jsonb_set()。每次调用都会设置一个密钥。

因此,在 sql 中,要设置键 {"test":"yes","prod":"no"} 你可以这样做:

update question set meta_data = jsonb_set(jsonb_set(extra_data, '{test}', '"yes"'::jsonb), '{prod}', '"no"'::jsonb)
where id = 123;

请注意,jsonb_set有两个嵌套调用,最里面的使用meta_data,最外面的接收最里面的结果。

所以 django 的等价物看起来像这样(注意,未经测试):

question.filter(id="123").update(
    meta_data=func(
        func(
            f("extra_data"),
            value(["test"]),
            value("yes", jsonfield()),
            function="jsonb_set",
        ),
        value(["prod"]),
        value("no", jsonfield()),
        function="jsonb_set",
    ))

或者您可以创建一个递归函数,为您返回混乱的情况,一次设置一项:

def recursive_jsonb_set(original, **kwargs):
    if kwargs:
        key, value = kwargs.popitem()
        return Func(
            recursive_jsonb_set(original, **kwargs),
            Value(key.split('__')),
            Value(value, JSONField()),
            function="jsonb_set")
    else:
        return original

Question.filter(id="123").update(
    meta_data=recursive_jsonb_set(F("extra_data"), test="yes", prod="no", other__status="done"))

请注意 '__' 功能以更新子项。

以上是如何使用 Django 的 ORM 使用 .update() 方法更新 JsonField 中多个键的值?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:stackoverflow。如有侵权,请联系admin@php.cn删除
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。