搜索
首页数据库mysql教程How Freshdesk Scaled Its Technology (Part I) – Before Shard_MySQL

[Edit Notes: Three year old startup Freshdesk built out of Chennai, is now clocking 70 million app views per week. The company is growing fast. In this post, its operations head Kiran talks about how they scaled the technology backend.]

Every startup’s fondest dream is to somehow grow exponentially but still stay nimble and super efficient. However that’s easier said than done. The 32GB RAM that is more than capable of handling the load today is going to look like a joke a week later. And with the financial freedom of a startup, you can only take one step at a time.

At Freshdesk, our customer base grew by 400 percent in the last year. And the number of requests boomed from 2 million to 65 million.

Freshdesk Growth

These are really cool numbers for a 3-year-old startup but from an engineering perspective, it’s closer to nightmare than dream come true. We scaled left right and center (but mostly upwards) in a really short amount of time, using a whole bunch of vertical techniques. Sure, we eventually had to shard our databases just to keep up, but some of these techniques helped us stay afloat, for quite a while.

Moore’s way

We tried to scale in the most straightforward way there is, by increasing the RAM, CPU and I/O. We travelled from Medium Instance Amazon EC2 First Generation to High Memory Quadruple Extra Large. It effectively increased our RAM from 3.75 GB to 64 GB. Then we figured that the amount of RAM we add and the CPU cycles do not correlate with the workload we get out of the instance. So we stayed put at 64GB.

The Read/write split

Since Freshdesk is a heavy read application (4:1; end user portals, APIs and loads of third party integrations tend to do that to you), we used MYSQL replication and distributed the reads between master and slave to accommodate them. Initially, we had different slaves getting selected for different queries using a round robin algorithm, but that quickly proved ineffective as we had no control over which query hit which DB. We worked around this by marking dedicated roles for each slave. For example, we used a slave for background processing jobs and another for report generation and so on (Seamless Database Pool, a Rails plugin, should do the job but if you’re an Engineyard user, I’d suggest you check out this cookbook).

As expected, the R/W split increased the number of I/Os we performed on our DBs but it didn’t do much good for the number of writes per second.

MySQL Partitioning

MySQL 5 has a built-in partitioning capability so all you have to do is, just choose the partition key and the number of partitions and the table will be partitioned, for you, automatically. However, if you’re thinking about going for MySQL partitioning, here are a couple of things you should keep in mind:

1. You need to choose the partition key carefully or alter the current schema to follow the MySQL partition rules.

2. The number of partitions you start with will affect the I/O operations on the disk directly.

3. If you use a hash-based algorithm with hash-based keys, you cannot control who goes where. This means you’ll be in trouble if two or more noisy customers fall within the same partition.

4. You need to make sure that every query contains the MySQL partition key. A query without the partition key ends up scanning all the partitions. Performance takes a dive as expected.

Post-partitioning, our read performance increased dramatically but, as expected, our number of writes didn’t increase much.

Caching

Some objects like support agent details change only 3-4 times in their lifetime. So, we started caching ActiveRecord objects and as well as html partials (bits and pieces of HTML) using Memcached. We chose Memcached because it scales well with multiple clusters. The Memcached client you use actually makes a lot of difference in the response time so we ended up going with dalli.

Distributed functions

Another way we try to keep the response time low is by using different storage engines for different purposes. For example, we use Amazon RedShift for analytics and data mining and Redis, to store state information and background jobs for Resque. But because Redis can’t scale or fallback, we don’t use it for atomic operations.

Scaling vertically can only get you so far. Even as we tried various techniques, we knew it was only a matter of time before we scaled horizontally. And the rate at which we were growing didn’t give us much time to ponder over whether it was a good decision or not. So before our app response times could sky rocket and the status quo changed, we sharded our databases. But that story’s for another day.


Further reading

About MySQL partitioning

Scaling of Basecamp

Mr.Moore gets to punt on Sharding

[About the Author:Kiran is the Director of Operations atFreshdesk. He calls himself the guy you should be mad at when the application is down. Reproduced with permission fromFreshdesk blog.]

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
减少在Docker中使用MySQL内存的使用减少在Docker中使用MySQL内存的使用Mar 04, 2025 pm 03:52 PM

本文探讨了Docker中的优化MySQL内存使用量。 它讨论了监视技术(Docker统计,性能架构,外部工具)和配置策略。 其中包括Docker内存限制,交换和cgroups

mysql无法打开共享库怎么解决mysql无法打开共享库怎么解决Mar 04, 2025 pm 04:01 PM

本文介绍了MySQL的“无法打开共享库”错误。 该问题源于MySQL无法找到必要的共享库(.SO/.DLL文件)。解决方案涉及通过系统软件包M验证库安装

如何使用Alter Table语句在MySQL中更改表?如何使用Alter Table语句在MySQL中更改表?Mar 19, 2025 pm 03:51 PM

本文讨论了使用MySQL的Alter Table语句修改表,包括添加/删除列,重命名表/列以及更改列数据类型。

在 Linux 中运行 MySQl(有/没有带有 phpmyadmin 的 podman 容器)在 Linux 中运行 MySQl(有/没有带有 phpmyadmin 的 podman 容器)Mar 04, 2025 pm 03:54 PM

本文比较使用/不使用PhpMyAdmin的Podman容器直接在Linux上安装MySQL。 它详细介绍了每种方法的安装步骤,强调了Podman在孤立,可移植性和可重复性方面的优势,还

什么是 SQLite?全面概述什么是 SQLite?全面概述Mar 04, 2025 pm 03:55 PM

本文提供了SQLite的全面概述,SQLite是一个独立的,无服务器的关系数据库。 它详细介绍了SQLite的优势(简单,可移植性,易用性)和缺点(并发限制,可伸缩性挑战)。 c

在MacOS上运行多个MySQL版本:逐步指南在MacOS上运行多个MySQL版本:逐步指南Mar 04, 2025 pm 03:49 PM

本指南展示了使用自制在MacOS上安装和管理多个MySQL版本。 它强调使用自制装置隔离安装,以防止冲突。 本文详细详细介绍了安装,起始/停止服务和最佳PRA

如何为MySQL连接配置SSL/TLS加密?如何为MySQL连接配置SSL/TLS加密?Mar 18, 2025 pm 12:01 PM

文章讨论了为MySQL配置SSL/TLS加密,包括证书生成和验证。主要问题是使用自签名证书的安全含义。[角色计数:159]

哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什么?哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什么?Mar 21, 2025 pm 06:28 PM

文章讨论了流行的MySQL GUI工具,例如MySQL Workbench和PhpMyAdmin,比较了它们对初学者和高级用户的功能和适合性。[159个字符]

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能