在机器学习中,支持向量机(SVM)常被用于数据分类和回归分析,是由分离超平面的判别算法模型。换句话说,给定标记的训练数据,该算法输出一个对新示例进行分类的最佳超平面。
支持向量机(SVM)算法模型是将示例表示为空间中的点,经过映射后,不同类别的示例被尽可能划分。除了执行线性分类外,支持向量机(SVM)还可以有效地执行非线性分类,将其输入隐式映射到高维特征空间。
支持向量机做什么?
给定一组训练示例,并根据2个类别给每个训练示例都各自标记上类别,再通过支持向量机(SVM)训练算法构建一个模型,将新示例分配给这2个类别,使其成为非概率二元线性分类器。
Python实现支持向量机(SVM)分类
先决条件:Numpy、Pandas、matplot-lib、scikit-learn
首先,创建数据集
from sklearn.datasets.samples_generator import make_blobs X,Y=make_blobs(n_samples=500,centers=2, random_state=0,cluster_std=0.40) import matplotlib.pyplot as plt plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap='spring'); plt.show()
分类
xfit=np.linspace(-1,3.5) plt.scatter(X[:,0],X[:,1],c=Y,s=50,cmap='spring') for m,b,d in[(1,0.65,0.33),(0.5,1.6,0.55),(-0.2,2.9,0.2)]: yfit=m*xfit+b plt.plot(xfit,yfit,'-k') plt.fill_between(xfit,yfit-d,yfit+d,edgecolor='none', color='#AAAAAA',alpha=0.4) plt.xlim(-1,3.5); plt.show()
以上是Python实现支持向量机(SVM)分类:算法原理详解的详细内容。更多信息请关注PHP中文网其他相关文章!

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...

如何使用正则表达式匹配到第一个闭合标签就停止?在处理HTML或其他标记语言时,常常需要使用正则表达式来�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版
SublimeText3 Linux最新版

Dreamweaver Mac版
视觉化网页开发工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中