搜索
首页科技周边人工智能Transformer位置编码的简介及改进方法
Transformer位置编码的简介及改进方法Jan 23, 2024 pm 01:09 PM
深度学习

Transformer位置编码介绍 Transformer位置编码如何改进

Transformer是一种广泛应用于自然语言处理任务的深度学习模型。它采用自注意力机制来捕捉序列中单词之间的关系,但忽略了单词在序列中的位置顺序,这可能导致信息丢失。为了解决这个问题,Transformer引入了位置编码。 位置编码的基本原理是为每个单词在序列中分配一个位置向量,该向量包含关于该单词在序列中位置的信息。这样,模型就可以通过将位置向量与词嵌入向量相加来考虑单词的位置信息。 一种常用的位置编码方法是使用正弦和余弦函数来生成位置向量。具体而言,对于每个位置和每个维度,位置向量的值由一个正弦函数和一个余弦函数组合而成。这种编码方式允许模型学习到不同位置之间的关系。 除了传统的位置编码方法,还有一些改进方法被提出。例如,可以使用学习的位置编码,其中位置向量通过神经网络进行学习。这种方法可以在训练过程中自适应地调整位置向量,从而更好地捕捉序列中的位置信息。 总之,Transformer模型使用位置编码来考虑单词在序

一、基本原理

在Transformer中,位置编码是将位置信息编码成向量的方式。它与单词的嵌入向量相加,以得到每个单词的最终表示。具体计算方式如下:

PE_{(i,2j)}=sin(frac{i}{10000^{2j/d_{model}}})

PE_{(i,2j+1)}=cos(frac{i}{10000^{2j/d_{model}}})

其中,i是单词的位置,j是位置编码向量的维度,d_{model}是Transformer模型的维度。通过这个公式,我们可以计算每个位置和每个维度的位置编码值。我们可以将这些值组合成一个位置编码矩阵,然后将其添加到单词嵌入矩阵中,以获得每个单词的位置编码表示。

二、改进方法

尽管Transformer的位置编码在许多任务中表现良好,但仍有一些改进方法可以使用。

1.学习位置编码

在传统的Transformer模型中,位置编码是基于固定公式计算的,从而无法适应不同任务和不同数据集的特定需求。因此,研究人员提出了一些方法来学习位置编码。一种方法是使用神经网络来学习位置编码。具体来说,研究人员使用自编码器或者卷积神经网络来学习位置编码,使得位置编码能够适应任务和数据集的特定需求。这种方法的优势是可以自适应地调整位置编码,从而提高模型的泛化能力。

2.随机位置编码

另一种改进方法是使用随机位置编码。这种方法是通过随机采样一组位置编码向量来替代固定的位置编码公式。这种方法的优点是可以增加模型的多样性,从而提高模型的鲁棒性和泛化能力。但是,由于随机位置编码是在每次训练时随机生成的,因此需要更多的训练时间。

3.多尺度位置编码

多尺度位置编码是一种通过将多个位置编码矩阵组合在一起来改进位置编码的方法。具体来说,研究人员将不同尺度的位置编码矩阵相加,以获得一个更丰富的位置编码表示。这种方法的优点是可以捕捉不同尺度的位置信息,从而提高模型的表现。

4.局部位置编码

局部位置编码是一种通过将位置编码限制在局部区域来改进位置编码的方法。具体来说,研究人员将位置编码的计算限制在当前单词周围的一定范围内,从而减少位置编码的复杂度。这种方法的优点是可以降低计算成本,同时还可以提高模型的表现。

总之,Transformer位置编码是一种重要的技术,可以帮助模型捕捉序列中单词之间的位置信息,从而提高模型的表现。虽然传统的位置编码在许多任务中表现良好,但是还有一些改进方法可以使用。这些改进方法可以根据任务和数据集的需求进行选择和组合,从而提高模型的性能。

以上是Transformer位置编码的简介及改进方法的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:网易伏羲。如有侵权,请联系admin@php.cn删除
人工智能(AI)、机器学习(ML)和深度学习(DL):有什么区别?人工智能(AI)、机器学习(ML)和深度学习(DL):有什么区别?Apr 12, 2023 pm 01:25 PM

人工智能Artificial Intelligence(AI)、机器学习Machine Learning(ML)和深度学习Deep Learning(DL)通常可以互换使用。但是,它们并不完全相同。人工智能是最广泛的概念,它赋予机器模仿人类行为的能力。机器学习是将人工智能应用到系统或机器中,帮助其自我学习和不断改进。最后,深度学习使用复杂的算法和深度神经网络来重复训练特定的模型或模式。让我们看看每个术语的演变和历程,以更好地理解人工智能、机器学习和深度学习实际指的是什么。人工智能自过去 70 多

深度学习GPU选购指南:哪款显卡配得上我的炼丹炉?深度学习GPU选购指南:哪款显卡配得上我的炼丹炉?Apr 12, 2023 pm 04:31 PM

众所周知,在处理深度学习和神经网络任务时,最好使用GPU而不是CPU来处理,因为在神经网络方面,即使是一个比较低端的GPU,性能也会胜过CPU。深度学习是一个对计算有着大量需求的领域,从一定程度上来说,GPU的选择将从根本上决定深度学习的体验。但问题来了,如何选购合适的GPU也是件头疼烧脑的事。怎么避免踩雷,如何做出性价比高的选择?曾经拿到过斯坦福、UCL、CMU、NYU、UW 博士 offer、目前在华盛顿大学读博的知名评测博主Tim Dettmers就针对深度学习领域需要怎样的GPU,结合自

字节跳动模型大规模部署实战字节跳动模型大规模部署实战Apr 12, 2023 pm 08:31 PM

一. 背景介绍在字节跳动,基于深度学习的应用遍地开花,工程师关注模型效果的同时也需要关注线上服务一致性和性能,早期这通常需要算法专家和工程专家分工合作并紧密配合来完成,这种模式存在比较高的 diff 排查验证等成本。随着 PyTorch/TensorFlow 框架的流行,深度学习模型训练和在线推理完成了统一,开发者仅需要关注具体算法逻辑,调用框架的 Python API 完成训练验证过程即可,之后模型可以很方便的序列化导出,并由统一的高性能 C++ 引擎完成推理工作。提升了开发者训练到部署的体验

基于深度学习的Deepfake检测综述基于深度学习的Deepfake检测综述Apr 12, 2023 pm 06:04 PM

深度学习 (DL) 已成为计算机科学中最具影响力的领域之一,直接影响着当今人类生活和社会。与历史上所有其他技术创新一样,深度学习也被用于一些违法的行为。Deepfakes 就是这样一种深度学习应用,在过去的几年里已经进行了数百项研究,发明和优化各种使用 AI 的 Deepfake 检测,本文主要就是讨论如何对 Deepfake 进行检测。为了应对Deepfake,已经开发出了深度学习方法以及机器学习(非深度学习)方法来检测 。深度学习模型需要考虑大量参数,因此需要大量数据来训练此类模型。这正是

聊聊实时通信中的AI降噪技术聊聊实时通信中的AI降噪技术Apr 12, 2023 pm 01:07 PM

Part 01 概述 在实时音视频通信场景,麦克风采集用户语音的同时会采集大量环境噪声,传统降噪算法仅对平稳噪声(如电扇风声、白噪声、电路底噪等)有一定效果,对非平稳的瞬态噪声(如餐厅嘈杂噪声、地铁环境噪声、家庭厨房噪声等)降噪效果较差,严重影响用户的通话体验。针对泛家庭、办公等复杂场景中的上百种非平稳噪声问题,融合通信系统部生态赋能团队自主研发基于GRU模型的AI音频降噪技术,并通过算法和工程优化,将降噪模型尺寸从2.4MB压缩至82KB,运行内存降低约65%;计算复杂度从约186Mflop

地址标准化服务AI深度学习模型推理优化实践地址标准化服务AI深度学习模型推理优化实践Apr 11, 2023 pm 07:28 PM

导读深度学习已在面向自然语言处理等领域的实际业务场景中广泛落地,对它的推理性能优化成为了部署环节中重要的一环。推理性能的提升:一方面,可以充分发挥部署硬件的能力,降低用户响应时间,同时节省成本;另一方面,可以在保持响应时间不变的前提下,使用结构更为复杂的深度学习模型,进而提升业务精度指标。本文针对地址标准化服务中的深度学习模型开展了推理性能优化工作。通过高性能算子、量化、编译优化等优化手段,在精度指标不降低的前提下,AI模型的模型端到端推理速度最高可获得了4.11倍的提升。1. 模型推理性能优化

深度学习撞墙?LeCun与Marcus到底谁捅了马蜂窝深度学习撞墙?LeCun与Marcus到底谁捅了马蜂窝Apr 09, 2023 am 09:41 AM

今天的主角,是一对AI界相爱相杀的老冤家:Yann LeCun和Gary Marcus在正式讲述这一次的「新仇」之前,我们先来回顾一下,两位大神的「旧恨」。LeCun与Marcus之争Facebook首席人工智能科学家和纽约大学教授,2018年图灵奖(Turing Award)得主杨立昆(Yann LeCun)在NOEMA杂志发表文章,回应此前Gary Marcus对AI与深度学习的评论。此前,Marcus在杂志Nautilus中发文,称深度学习已经「无法前进」Marcus此人,属于是看热闹的不

英伟达首席科学家:深度学习硬件的过去、现在和未来英伟达首席科学家:深度学习硬件的过去、现在和未来Apr 12, 2023 pm 03:07 PM

过去十年是深度学习的“黄金十年”,它彻底改变了人类的工作和娱乐方式,并且广泛应用到医疗、教育、产品设计等各行各业,而这一切离不开计算硬件的进步,特别是GPU的革新。 深度学习技术的成功实现取决于三大要素:第一是算法。20世纪80年代甚至更早就提出了大多数深度学习算法如深度神经网络、卷积神经网络、反向传播算法和随机梯度下降等。 第二是数据集。训练神经网络的数据集必须足够大,才能使神经网络的性能优于其他技术。直至21世纪初,诸如Pascal和ImageNet等大数据集才得以现世。 第三是硬件。只有

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。