搜索
首页科技周边人工智能深入解析Vision Transformer(VIT)模型的工作原理和特点

深入解析Vision Transformer(VIT)模型的工作原理和特点

Jan 23, 2024 am 08:30 AM
人工智能机器学习图像处理

什么是Vision Transformer(VIT)?Vision Transformer模型详解

Vision Transformer(VIT)是Google提出的一种基于Transformer的图片分类模型。不同于传统CNN模型,VIT将图像表示为序列,并通过预测图像的类标签来学习图像结构。为了实现这一点,VIT将输入图像划分为多个补丁,并将每个补丁中的像素通过通道连接,然后进行线性投影以达到所需的输入维度。最后,每个补丁被展平为单个向量,从而形成输入序列。通过Transformer的自注意力机制,VIT能够捕捉到不同补丁之间的关系,并进行有效的特征提取和分类预测。这种序列化的图像表示方法为计算机视觉任务带来了新的思路和效果。

Vision Transformer模型被广泛应用于图像识别任务,如对象检测、图像分割、图像分类和动作识别。此外,它还适用于生成建模和多模型任务,包括视觉基础、视觉问答和视觉推理等。

Vision Transformer是如何进行图片分类的?

在深入研究Vision Transformers的工作原理之前,我们必须了解原始Transformer中的注意力和多头注意力的基础知识。

Transformer是一种使用称为自注意力机制的模型,既不是CNN也不是LSTM,它构建了一个Transformer模型并显着优于这些方法。

Transformer模型的注意力机制使用了三个变量:Q(Query)、K(Key)和V(Value)。简单地说,它计算一个Query token和一个Key token的注意力权重,并乘以每个Key关联的Value。即Transformer模型计算Query token和Key token之间的关联(注意力权重),并将与每个Key关联的Value相乘。

定义Q、K、V计算为单头,在多头注意力机制中,每个头都有自己的投影矩阵W_i^Q、W_i^K、W_i^V,它们分别计算使用这些矩阵投影的特征值的注意力权重。

多头注意力机制允许每次都以不同的方式关注序列的不同部分。这意味着:

该模型可以更好地捕获位置信息,因为每个头将关注不同的输入部分。它们的组合将提供更强大的表示。

每个头还将通过唯一关联的单词来捕获不同的上下文信息。

到此我们知道了Transformer模型的工作机制,再回过头看看Vision Transformer模型。

Vision Transformer是将Transformer应用于图像分类任务的模型,于2020年10月提出。模型架构与原始Transformer几乎相同,它允许将图像视为输入,就像自然语言处理一样。

Vision Transformer模型使用Transformer Encoder作为基础模型从图像中提取特征,并将这些处理过的特征传递到多层感知器(MLP)头部模型中进行分类。由于基础模型Transformer的计算量已经非常大,因此Vision Transformer将图像分解成方形块,作为一种轻量级“窗口化”注意力机制来解决此类问题。

然后图像会被转换为​​方形补丁,这些补丁被展平并通过单个前馈层发送以获得线性补丁投影。为了帮助分类位,通过将可学习的类嵌入与其他补丁投影连接起来。

总之,这些补丁投影和位置嵌入形成了一个更大的矩阵,很快就会通过Transformer编码器。然后将Transformer编码器的输出发送到多层感知器以进行图像分类。输入特征很好地捕捉了图像的本质,使MLP头的分类任务简单得多。

ViT与ResNet与MobileNet的性能基准比较

虽然ViT在学习高质量图像特征方面显示出卓越的潜力,但它在性能与精度增益方面较差。准确性的小幅提高并不能证明ViT的运行时间较差。

Vision Transformer模型相关

  • 微调代码和预训练的Vision Transformer模型可在Google Research的GitHub上访问。
  • Vision Transformer模型在ImageNet和ImageNet-21k数据集上进行预训练。
  • Vision Transformer(ViT)模型在ICLR 2021上发表的标题为“An Image is Worth 16*16 Words:Transformers for Image Recognition at Scale”的会议研究论文中被引入。

以上是深入解析Vision Transformer(VIT)模型的工作原理和特点的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:网易伏羲。如有侵权,请联系admin@php.cn删除
阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?Apr 11, 2025 pm 12:13 PM

斯坦福大学以人为本人工智能研究所发布的《2025年人工智能指数报告》对正在进行的人工智能革命进行了很好的概述。让我们用四个简单的概念来解读它:认知(了解正在发生的事情)、欣赏(看到好处)、接纳(面对挑战)和责任(弄清我们的责任)。 认知:人工智能无处不在,并且发展迅速 我们需要敏锐地意识到人工智能发展和传播的速度有多快。人工智能系统正在不断改进,在数学和复杂思维测试中取得了优异的成绩,而就在一年前,它们还在这些测试中惨败。想象一下,人工智能解决复杂的编码问题或研究生水平的科学问题——自2023年

开始使用Meta Llama 3.2 -Analytics Vidhya开始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

AV字节:Meta' llama 3.2,Google的双子座1.5等AV字节:Meta' llama 3.2,Google的双子座1.5等Apr 11, 2025 pm 12:01 PM

本周的AI景观:进步,道德考虑和监管辩论的旋风。 OpenAI,Google,Meta和Microsoft等主要参与者已经释放了一系列更新,从开创性的新车型到LE的关键转变

与机器交谈的人类成本:聊天机器人真的可以在乎吗?与机器交谈的人类成本:聊天机器人真的可以在乎吗?Apr 11, 2025 pm 12:00 PM

连接的舒适幻想:我们在与AI的关系中真的在蓬勃发展吗? 这个问题挑战了麻省理工学院媒体实验室“用AI(AHA)”研讨会的乐观语气。事件展示了加油

了解Python的Scipy图书馆了解Python的Scipy图书馆Apr 11, 2025 am 11:57 AM

介绍 想象一下,您是科学家或工程师解决复杂问题 - 微分方程,优化挑战或傅立叶分析。 Python的易用性和图形功能很有吸引力,但是这些任务需要强大的工具

3种运行Llama 3.2的方法-Analytics Vidhya3种运行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式联运AI强力 Meta的最新多模式模型Llama 3.2代表了AI的重大进步,具有增强的语言理解力,提高的准确性和出色的文本生成能力。 它的能力t

使用dagster自动化数据质量检查使用dagster自动化数据质量检查Apr 11, 2025 am 11:44 AM

数据质量保证:与Dagster自动检查和良好期望 保持高数据质量对于数据驱动的业务至关重要。 随着数据量和源的增加,手动质量控制变得效率低下,容易出现错误。

大型机在人工智能时代有角色吗?大型机在人工智能时代有角色吗?Apr 11, 2025 am 11:42 AM

大型机:AI革命的无名英雄 虽然服务器在通用应用程序上表现出色并处理多个客户端,但大型机是专为关键任务任务而建立的。 这些功能强大的系统经常在Heavil中找到

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器