Wasserstein距离,也称为Earth Mover's Distance,是一种用于度量两个概率分布之间的距离的数学方法。相较于传统的距离度量方法如欧几里得距离,Wasserstein距离更加全面地考虑了分布间的相似性以及几何距离之间的关系,从而更适合描述高维数据集的相似性。通过将一个分布转化为另一个分布所需的最小总成本来计算Wasserstein距离。这个成本可以被解释为将一个分布中的质量从一个位置转移至另一个位置所需的工作量。因此,Wasserstein距离可以被视为两个分布间的质量转移成本。这使得Wasserstein距离在许多领域中有广泛应用,包括图像处理、自然语言处理、经济学等。通过考虑分布间的相似性和几何距
Wasserstein距离的定义基于最小化将一个分布转换为另一个分布所需的成本。这个成本可以是任意的,但通常是指将一个分布中的质量从一个位置移动到另一个位置所需的成本,可以用两个位置之间的距离和质量的乘积来表示。Wasserstein距离的值等于所有可能的转换方案的成本的最小值。
在数学上,Wasserstein距离可以定义为:
W_p(mu,nu)=left(inf_{gammainGamma(mu,nu)}int_{mathbb{R}^d times mathbb{R}^d} |x-y|^p dgamma(x,y)right)^{1/p}
其中,mu和nu是两个概率分布,Gamma(mu,nu)是将mu转换为nu的所有概率分布的集合,gamma(x,y)表示将(x,y)对应的转换概率。在Wasserstein距离中,p geq 1是一个常数,通常取p=1或p=2。当p=1时,Wasserstein距离也被称为Earth Mover's Distance,因为它可以被视为将一个分布转移到另一个分布所需的最小操作次数的度量。
为了更好地理解Wasserstein距离的概念,我们可以考虑一个简单的例子:假设我们有两个一维的概率分布P和Q,它们分别在区间[0,1]和[0.5,1.5]上均匀分布。我们可以使用Python和Scipy库来计算它们之间的Wasserstein距离。
import numpy as np from scipy.stats import wasserstein_distance # 定义两个概率分布 P 和 Q P = np.ones(100) / 100 Q = np.ones(100) / 100 Q[50:] = 0 # 计算它们之间的Wasserstein距离 w_dist = wasserstein_distance(P, Q) print("Wasserstein distance:", w_dist)
在这个例子中,我们使用numpy库生成了两个100个元素的概率分布,它们都是均匀分布的。然后,我们将第二个分布Q的后50个元素设为0,以模拟它在区间[0.5,1]上的分布情况。最后,我们使用Scipy库中的wasserstein_distance函数计算它们之间的Wasserstein距离。运行代码后,我们可以得到输出结果:
Wasserstein distance: 0.5
这意味着将分布P转换为分布Q所需的最小成本为0.5。在这个例子中,我们可以将它解释为将一个长度为0.5的土堆移动到长度为0.5的坑中所需的最小距离。
总之,Wasserstein距离是一种用于衡量两个概率分布之间距离的方法,它考虑了分布之间的相似性和几何距离之间的关系。它有许多应用,例如生成对抗网络(GAN)中的损失函数和图像检索中的相似性度量。
以上是Wasserstein距离的详细内容。更多信息请关注PHP中文网其他相关文章!

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

译者 | 朱先忠审校 | 孙淑娟在我之前的博客中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。本文包括的内容如下:简介LazyPredict模块的安装在分类模型中实施LazyPredict

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

Atom编辑器mac版下载
最流行的的开源编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境