搜索
首页科技周边人工智能图片识别中的应用和示例以及误差反向传播算法的原理

图片识别中的应用和示例以及误差反向传播算法的原理

误差反向传播是常用机器学习算法,广泛应用于神经网络训练,尤其在图片识别领域。本文将介绍该算法在图片识别中的应用、原理和示例。

一、误差反向传播算法的应用

图片识别是一种使用计算机程序对数字或图像进行分析、处理和理解的方法,以识别出其中的信息和特征。在图片识别中,误差反向传播算法被广泛应用。该算法通过训练神经网络来实现识别任务。神经网络是一种模拟人脑神经元之间相互作用的计算模型,它能够有效地处理和分类复杂的输入数据。通过不断调整神经网络的权重和偏差,误差反向传播算法可以使神经网络逐渐学习和改进其识别能力。

误差反向传播算法通过调整神经网络的权重和偏置,最小化输出结果与实际结果的误差。训练过程包括以下步骤:计算神经网络的输出,计算误差,将误差反向传播到每个神经元,根据误差调整权重和偏置。

1.随机初始化神经网络的权重和偏置。

2.通过输入一组训练数据,计算神经网络的输出结果。

3.计算输出结果与实际结果之间的误差。

4.反向传播误差,调整神经网络的权重和偏置。

5.重复步骤2-4,直到误差达到最小值或者达到预设的训练次数。

误差反向传播算法的训练过程可以看作是一个优化问题,即最小化神经网络的输出结果与实际结果之间的误差。在训练过程中,算法会不断调整神经网络的权重和偏置,使得误差逐渐减小,最终达到较高的识别准确率。

误差反向传播算法的应用不仅局限于图片识别,还可以用于语音识别、自然语言处理等领域。它的广泛应用使得许多人工智能技术可以更有效地实现。

二、误差反向传播算法的原理

误差反向传播算法的原理可以用以下几个步骤来概括:

1.前向传播:输入一个训练样本,通过神经网络的前向传播计算出输出结果。

2.计算误差:将输出结果与实际结果进行比较,计算出误差。

3.反向传播:将误差从输出层向输入层反向传播,调整每个神经元的权重和偏置。

4.更新权重和偏置:根据反向传播得到的梯度信息,更新神经元的权重和偏置,使得下一轮前向传播时误差更小。

在误差反向传播算法中,反向传播的过程是关键。它通过链式法则将误差从输出层传递到输入层,计算每个神经元对误差的贡献,并根据贡献程度来调整权重和偏置。具体来说,链式法则可以用以下公式来表示:

frac{partial E}{partial w_{i,j}}=frac{partial E}{partial y_j}frac{partial y_j}{partial z_j}frac{partial z_j}{partial w_{i,j}}

其中,E表示误差,w_{i,j}表示连接第i个神经元和第j个神经元的权重,y_j表示第j个神经元的输出,z_j表示第j个神经元的加权和。这个公式可以解释为,误差对于连接权重的影响是由输出y_j、激活函数的导数frac{partial y_j}{partial z_j}和输入x_i的乘积组成的。

通过链式法则,误差可以反向传播到每个神经元,并计算每个神经元对误差的贡献。然后,根据贡献程度来调整权重和偏置,使得下一轮前向传播时误差更小。

三、误差反向传播算法的示例

下面是一个简单的示例,说明误差反向传播算法如何应用于图片识别。

假设我们有一张28x28的手写数字图片,要通过神经网络来识别这个数字。我们将这张图片展开成一个784维的向量,并将其中的每个像素作为神经网络的输入。

我们使用一个包含两个隐藏层的神经网络来进行训练。每个隐藏层有64个神经元,输出层有10个神经元,分别代表数字0-9。

首先,我们随机初始化神经网络的权重和偏置。然后,我们输入一组训练数据,并通过前向传播计算出输出结果。假设输出结果为[0.1,0.2,0.05,0.3,0.02,0.15,0.05,0.1,0.03,0.1],表示神经网络认为这张图片最有可能是数字3。

接下来,我们计算输出结果与实际结果之间的误差。假设实际结果为[0,0,0,1,0,0,0,0,0,0],表示这张图片的实际数字是3。我们可以使用交叉熵损失函数来计算误差,公式如下:

E=-sum_{i=1}^{10}y_i log(p_i)

其中,y_i表示实际结果的第i个元素,p_i表示神经网络的输出结果的第i个元素。将实际结果和神经网络的输出结果代入公式,得到误差为0.356。

接下来,我们将误差反向传播到神经网络中,计算每个神经元对误差的贡献,并根据贡献程度来调整权重和偏置。我们可以使用梯度下降算法来更新权重和偏置,公式如下:

w_{i,j}=w_{i,j}-alphafrac{partial E}{partial w_{i,j}}

其中,alpha表示学习率,用来调整每次更新的步长。通过不断调整权重和偏置,我们可以使得神经网络的输出结果更接近实际结果,从而提高识别准确率。

以上就是误差反向传播算法在图片识别中的应用、原理和示例。误差反向传播算法通过不断调整神经网络的权重和偏置,使得神经网络能够更准确地识别图片,具有广泛的应用前景。

以上是图片识别中的应用和示例以及误差反向传播算法的原理的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:网易伏羲。如有侵权,请联系admin@php.cn删除
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

仓库:如何复兴队友
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!