搜索
首页科技周边人工智能了解人机交互 (HCI):人机交互技术的示例

人机交互(HCI)是一个跨学科研究领域,旨在通过设计满足用户需求的交互式计算机界面,优化用户与计算机的交互方式。它融合了计算机科学、行为科学、认知科学、人体工程学、心理学和设计原理等学科,以提高用户体验和效率。通过研究用户需求和行为模式,HCI可以改进界面设计,增强用户满意度和工作效率,进而推动计算机技术的发展和普及。

HCI的出现可以追溯到1980年代,当时个人计算机兴起。那时,台式电脑开始普及到家庭和公司办公室。 HCI的起源可以追溯到视频游戏、文字处理器和数字单元。这些技术的发展促进了人机交互的进步。

然而,随着互联网的迅速发展和移动多样化技术的普及,计算已经无处不在并且变得无所不能。这些技术的进步进一步推动了用户交互方式的演变。因此,对于一种更加人性化的人机交互工具的需求显着增加。

今天,人机交互(HCI)专注于提升用户对计算设备的使用体验,通过设计、实施和评估交互界面。这涵盖了用户界面设计、以用户为中心的设计和用户体验设计。

什么是人机交互 (HCI)?人机交互技术示例

人机交互的关键要素

从根本上说,HCI由四个关键要素组成:

1. 用户

用户是指个人或群体参与共同任务的人。人机交互研究用户需求、目标和交互模式,分析认知、情绪和体验等参数,以提供无缝的计算系统交互体验。

2. 目标导向的任务

用户在操作计算机系统时会有明确目标值,计算机提供交互操作来实现这一目标。

3. 界面

界面是一个至关重要的HCI因素,可以增强整体用户交互体验。必须考虑各种与界面相关的方面,例如交互类型(触摸、点击、手势或语音)、屏幕分辨率、显示尺寸,甚至颜色对比度。用户可以根据需要进行调整。

4. 背景

HCI不仅要在用户和计算机之间提供更好的通信,还要考虑访问系统的环境。例如,在设计智能手机应用程序时,设计师需要评估应用程序在不同照明条件下(白天或晚上)的视觉效果,或者在网络连接不佳时的性能。这些方面会对最终用户体验产生重大影响。

因此,HCI需要不断测试和改进交互设计,这些设计会影响用户的体验。

什么是人机交互 (HCI)?人机交互技术示例

人机交互技术示例

技术发展带来了一些具有先进人机交互技术的工具和设备,下面就来看看人机交互的实际应用吧。

1.物联网技术

HCI领域的最新发展通过预触摸电话引入了“预触摸感应”的概念。这意味着手机可以检测到用户如何握住手机或哪个手指首先靠近屏幕进行操作。在检测到用户的手部动作后,设备会立即预测用户的意图并在用户给出任何指令之前执行任务。

另一个与HCI相关的开发是“ Paper ID ”。该纸充当触摸屏、感知环境、检测手势并连接到其他物联网设备。从根本上说,它通过关注人机交互变量,将纸张数字化并基于手势执行任务。

2.眼动追踪技术

眼动追踪技术是关于根据注视点检测一个人在看的地方。眼动追踪设备使用摄像头来捕捉用户的视线以及一些嵌入式光源以保持清晰。此外,这些设备使用机器学习算法和图像处理功能来进行准确的注视检测。

比如道路安全的“驾驶员监控系统” 。此外,在未来支持HCI的眼动追踪系统还能允许用户通过滚动他们的眼球来滚动浏览计算机屏幕。

3.语音识别技术

语音识别技术解释人类语言,从中获得意义,并为用户执行任务。最近,随着聊天机器人和虚拟助手的出现,这项技术得到了极大的普及。

比如微软的Cortana、谷歌的Google Assistant和苹果的Siri等产品都使用语音识别来实现用户与其设备、汽车等的交互。 HCI 和语音识别的结合进一步微调了人机交互,允许设备以最大的准确性解释和响应用户的命令和问题。

4、AR/VR技术

AR和VR是沉浸式技术,可让人类与数字世界互动并提高日常任务的生产力。例如,智能眼镜可以实现免提和无缝用户与计算系统的交互。

目前,HCI 研究正在针对其他研究领域,例如脑机接口和情感分析,以提升用户的 AR/VR 体验。

5. 云计算

得益于云计算和人机交互,灵活办公、远程办公已经成为现实。员工可以通过利用基于云的SaaS服务从任何物理位置访问云上的数据。此类虚拟设置简化了工作流程并支持与跨行业垂直团队的无缝协作,而不会影响生产力。

以上是了解人机交互 (HCI):人机交互技术的示例的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:网易伏羲。如有侵权,请联系admin@php.cn删除
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),