搜索
首页科技周边人工智能机器学习中的样本池计算综述

机器学习中的样本池计算综述

储备池计算(Reservoir computing,RC)是一种使用递归神经网络的计算框架,与传统的神经网络不同的是,它只更新部分参数,而随机选择并固定其他参数。

储备池是一个固定非线性系统,通过其动力学将输入信号映射到更高维的计算空间。储层可以看作是一个黑匣子,将输入信号反馈到储层后,通过训练一个简单的读出机制来读取储层的状态,并将其映射到所需的输出。

由于储层动力学是固定的,训练仅在读出阶段进行。

传统储备池计算需要满足两个条件:由独立的非线性单元组成,并能存储信息。

储备池计算本质上是一种用于使机器学习算法运行得更快的方法。

术语中的“Reservoir”指的是动力系统。动力系统由一个数学函数表示,该函数解释了空间中的点随时间变化的方式。知道这些就可以预测该点在空间中的位置。

储备池由几个随机连接的循环连接单元组成,储备池计算利用循环神经网络,而不是更新网络的所有参数,它只更新少数参数,并在随机选择后保持其他参数不变。

储备池计算的框架类似于递归神经网络的框架,回声状态网络、液态状态机和其他递归神经网络模型构成储备池计算的基础框架,正是这种设计,让储备池计算在处理时间或顺序数据的任务上相当有效。

储备池计算的目的

储备池计算是将非线性输入顺序地转换到高维空间,以便可以通过简单的学习算法以有效的方式读出输入的特征。除了使用递归神经网络之外,还可以使用其他动力系统作为储备池。储备池计算目标是构建能够以更低的学习成本以更快的速度处理信息和数据的系统。在机器学习的情况下,这一点尤为重要,因为在训练大型数据集时功耗通常会很高。

储备池计算类型

  • 上下文混响网络
  • 回声状态网络
  • 液态机
  • 非线性瞬态计算
  • 深度储备池计算

1.上下文混响网络

在上下文混响网络中,输入层将信号输入到高维动力系统中,这个高维动力系统中的信息由一个可训练的单层感知器读出。它有两种类型的动力学系统:其中一种是将随机权重固定的递归神经网络,另一种动力学系统是受图灵形态发生模型启发的连续反应扩散系统。

2.回声状态网络

回声状态网络有一个稀疏连接的隐藏层。隐藏层的连通性通常小于10%。试图用输入信号驱动更大的随机权重固定的递归神经网络,从而在储存器中的每个神经元中诱导非线性响应信号,然后使用所有响应信号的可训练线性组合将其连接到所需的输出信号。

3.液态机

液态机(LSM)采用脉冲神经网络。LSM由大量节点或神经元组成。每个神经元都从其他神经元和外部来源获得时变输入。由于连接的重复性,时变输入变成了网络节点中激活的时空模式。然后由线性判别单元读出这些激活的时空模式。

4.非线性瞬态计算

当时变输入信号离开机制的内部动力学时,这些偏离引起瞬态或暂时的变化,这些变化在设备的输出中得到了体现。

5.深度储备池计算

随着深度储备池计算模型的出现,储备池计算框架开始向深度学习扩展,以便以分层方式处理时间数据,并且还允许研究分层组合在RNN中的作用。

以上是机器学习中的样本池计算综述的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:网易伏羲。如有侵权,请联系admin@php.cn删除
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能