搜索
首页数据库mysql教程使用Apache Hadoop、Impala和MySQL进行数据分析_MySQL

Apache

Apache Hadoop是目前被大家广泛使用的数据分析平台,它可靠、高效、可伸缩。Percona公司的Alexander Rubin最近发表了一篇博客文章介绍了他是如何将一个表从MySQL导出到Hadoop然后将数据加载到Cloudera Impala并在这上面运行报告的。

在Alexander Rubin的这个测试示例中他使用的集群包含6个数据节点。下面是具体的规格:

用途

服务器规格

NameNode、DataNode、Hive 元数据存储等

2x PowerEdge 2950, 2x L5335 CPU @ 2.00GHz, 8 cores, 16GB RAM, 使用8个SAS驱动器的RAID 10

仅做数据节点

4x PowerEdge SC1425, 2x Xeon CPU @ 3.00GHz, 2 cores, 8GB RAM, 单个4TB 驱动器

数据导出

有很多方法可以将数据从MySQL导出到Hadoop。在Rubin的这个示例中,他简单地将ontime表导出到了一个文本文件中:

select*intooutfile '/tmp/ontime.psv'
FIELDS TERMINATED BY ','
fromontime;

你可以使用“|”或者任何其他的符号作为分隔符。当然,还可以使用下面这段简单的脚本直接从www.transtats.bts.gov上下载数据。

foryin{1988..2013}
do
foriin{1..12}
do
                u="http://www.transtats.bts.gov/Download/On_Time_On_Time_Performance_${y}_${i}.zip"
                wget $u -o ontime.log
                unzipOn_Time_On_Time_Performance_${y}_${i}.zip
done
done

载入Hadoop HDFS

Rubin首先将数据载入到了HDFS中作为一组文件。Hive或者Impala将会使用导入数据的那个目录,连接该目录下的所有文件。在Rubin的示例中,他在HDFS上创建了/data/ontime/目录,然后将本地所有匹配On_Time_On_Time_Performance_*.csv模式的文件复制到了该目录下。

$ hdfs dfs -mkdir /data/ontime/
$ hdfs -v dfs -copyFromLocalOn_Time_On_Time_Performance_*.csv /data/ontime/

Impala中创建外部表

当所有数据文件都被载入之后接下来需要创建一个外部表:

CREATE EXTERNAL TABLE ontime_csv (
YearDint,
Quartertinyint ,
MonthDtinyint ,
DayofMonthtinyint ,
DayOfWeektinyint ,
FlightDatestring,
UniqueCarrierstring,
AirlineIDint,
Carrierstring,
TailNumstring,
FlightNumstring,
OriginAirportIDint,
OriginAirportSeqIDint,
OriginCityMarketIDint,
Originstring,
OriginCityNamestring,
OriginStatestring,
OriginStateFipsstring,
OriginStateNamestring,
OriginWacint,
DestAirportIDint,
DestAirportSeqIDint,
DestCityMarketIDint,
Deststring,
...
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION '/data/ontime';

注意“EXTERNAL”关键词和LOCATION,后者指向HDFS中的一个目录而不是文件。Impala仅会创建元信息,不会修改表。创建之后就能立即查询该表,在Rubin的这个示例中执行的SQL是:

>selectyeard, count(*)fromontime_psv groupbyyeard;

该SQL耗时131.38秒。注意GROUP BY并不会对行进行排序,这一点不同于MySQL,如果要排序需要添加 ORDER BY yeard语句。另外通过执行计划我们能够发现Impala需要扫描大小约为45.68GB的文件。

Impala使用面向列的格式和压缩

Impala最大的好处就是它支持面向列的格式和压缩。Rubin尝试了新的使用Snappy压缩算法的Parquet格式。因为这个例子使用的表非常大,所以最好使用基于列的格式。为了使用Parquet格式,首先需要载入数据,这在Impala中已经有表、HDFS中已经有文件的情况下是非常容易实现的。本示例大约使用了729秒的时间导入了约1亿5千万条记录,导入之后使用新表再次执行同一个查询所耗费的时间只有4.17秒,扫描的数据量也小了很多,压缩之后的数据只有3.95GB。

Impala复杂查询示例

select
   min(yeard), max(yeard),Carrier, count(*)ascnt,
   sum(if(ArrDelayMinutes>30, 1, 0))asflights_delayed,
   round(sum(if(ArrDelayMinutes>30, 1, 0))/count(*),2)asrate
FROM ontime_parquet_snappy
WHERE
DayOfWeeknotin(6,7)andOriginStatenotin('AK', 'HI', 'PR', 'VI')
andDestStatenotin('AK', 'HI', 'PR', 'VI')
andflightdate GROUPbycarrier
HAVING cnt > 100000andmax(yeard) > 1990
ORDERbyrate DESC
LIMIT 1000;

注意:以上查询不支持sum(ArrDelayMinutes>30)语法,需要使用sum(if(ArrDelayMinutes>30, 1, 0) 代替。另外查询故意被设计为不使用索引:大部分条件仅会过滤掉不到30%的数据。

该查询耗时15.28秒比最初的MySQL结果(非并行执行时15分56.40秒,并行执行时5分47秒)要快很多。当然,它们之间并不是一个“对等的比较”:

  • MySQL将扫描45GB的数据而使用Parquet的Impala仅会扫描3.5GB的数据
  • MySQL运行在一台服务器上,而Hadoop和Impala则并行运行在6台服务器上

尽管如此,Hadoop和Impala在性能方面的表现依然令人印象深刻,同时还能够支持扩展,因此在大数据分析场景中它能为我们提供很多帮助。


感谢崔康对本文的审校。

给InfoQ中文站投稿或者参与内容翻译工作,请邮件至editors@cn.infoq.com。也欢迎大家通过新浪微博(@InfoQ)或者腾讯微博(@InfoQ)关注我们,并与我们的编辑和其他读者朋友交流。

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
MySQL与Sqlite有何不同?MySQL与Sqlite有何不同?Apr 24, 2025 am 12:12 AM

MySQL和SQLite的主要区别在于设计理念和使用场景:1.MySQL适用于大型应用和企业级解决方案,支持高性能和高并发;2.SQLite适合移动应用和桌面软件,轻量级且易于嵌入。

MySQL中的索引是什么?它们如何提高性能?MySQL中的索引是什么?它们如何提高性能?Apr 24, 2025 am 12:09 AM

MySQL中的索引是数据库表中一列或多列的有序结构,用于加速数据检索。1)索引通过减少扫描数据量提升查询速度。2)B-Tree索引利用平衡树结构,适合范围查询和排序。3)创建索引使用CREATEINDEX语句,如CREATEINDEXidx_customer_idONorders(customer_id)。4)复合索引可优化多列查询,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。5)使用EXPLAIN分析查询计划,避

说明如何使用MySQL中的交易来确保数据一致性。说明如何使用MySQL中的交易来确保数据一致性。Apr 24, 2025 am 12:09 AM

在MySQL中使用事务可以确保数据一致性。1)通过STARTTRANSACTION开始事务,执行SQL操作后用COMMIT提交或ROLLBACK回滚。2)使用SAVEPOINT可以设置保存点,允许部分回滚。3)性能优化建议包括缩短事务时间、避免大规模查询和合理使用隔离级别。

在哪些情况下,您可以选择PostgreSQL而不是MySQL?在哪些情况下,您可以选择PostgreSQL而不是MySQL?Apr 24, 2025 am 12:07 AM

选择PostgreSQL而非MySQL的场景包括:1)需要复杂查询和高级SQL功能,2)要求严格的数据完整性和ACID遵从性,3)需要高级空间功能,4)处理大数据集时需要高性能。PostgreSQL在这些方面表现出色,适合需要复杂数据处理和高数据完整性的项目。

如何保护MySQL数据库?如何保护MySQL数据库?Apr 24, 2025 am 12:04 AM

MySQL数据库的安全可以通过以下措施实现:1.用户权限管理:通过CREATEUSER和GRANT命令严格控制访问权限。2.加密传输:配置SSL/TLS确保数据传输安全。3.数据库备份和恢复:使用mysqldump或mysqlpump定期备份数据。4.高级安全策略:使用防火墙限制访问,并启用审计日志记录操作。5.性能优化与最佳实践:通过索引和查询优化以及定期维护兼顾安全和性能。

您可以使用哪些工具来监视MySQL性能?您可以使用哪些工具来监视MySQL性能?Apr 23, 2025 am 12:21 AM

如何有效监控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。1.使用mysqladmin查看连接数。2.用SHOWGLOBALSTATUS查看查询数。3.PMM提供详细性能数据和图形化界面。4.MySQLEnterpriseMonitor提供丰富的监控功能和报警机制。

MySQL与SQL Server有何不同?MySQL与SQL Server有何不同?Apr 23, 2025 am 12:20 AM

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显着差异,选择时需考虑项目规模和未来扩展性。

在哪些情况下,您可以选择SQL Server而不是MySQL?在哪些情况下,您可以选择SQL Server而不是MySQL?Apr 23, 2025 am 12:20 AM

在需要高可用性、高级安全性和良好集成性的企业级应用场景下,应选择SQLServer而不是MySQL。1)SQLServer提供企业级功能,如高可用性和高级安全性。2)它与微软生态系统如VisualStudio和PowerBI紧密集成。3)SQLServer在性能优化方面表现出色,支持内存优化表和列存储索引。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。