Dashboard 简介:实时监控与数据可视化的利器,需要具体代码示例
Dashboard 是一种常见的数据可视化工具,可以让人们在一个地方快速浏览多个指标。Dashboard 可以实时监控任何事物的运行状态,并提供准确的信息和报告。不管你是在管理一个企业、跟踪一个项目的数据、追踪市场趋势,或者处理机器学习的数据输出,Dashboard 总能发挥出它的优势。
Dashboard 的主要目的是提供简单可视化的工具,使我们能够在不同的项目中实时查看和监控数据。它优化了数据展示的方式,使其更加有吸引力和易于理解。Dashboard 可以帮助我们更好地理解数据,并帮助我们做出准确的决策。在这篇文章中,我们将探讨 Dashboard 的一些基本概念和一些具体的代码示例。
基本概念
在开始编写 Dashboard 之前,我们需要了解 Dashboard 的一些基本概念。以下是一些基本概念的解释:
- 指标:Dashboard 中的指标是要被监控和测量的数据项。比如,网站的访问量可以是一个指标。
- 维度:维度是指标之间的分类,比如在一个销售报告中,日期、地区、渠道等都可以是维度。
- 图表类型:在 Dashboard 中,我们可以使用不同的图表类型来展示数据,比如柱状图、折线图、饼图等。
- 数据源:Dashboard 中的数据源通常是一个数据库,但也可以是从 API 或 Web 服务中获取的数据。
代码示例
在这里,我们将使用 Python 和 Bokeh 库来创建一个 Dashboard。Bokeh 是一个 Python 库,用于制作交互式 Web 可视化的工具,可以与大多数流行的 Python 库进行集成,如 Pandas、NumPy、SciPy 等。
我们将使用天气数据来创建 Dashboard。让我们从导入所需的库开始:
import pandas as pd from bokeh.layouts import column from bokeh.models import ColumnDataSource, RangeTool, HoverTool from bokeh.plotting import figure, show
此外,我们还需要导入天气数据集。
weather_data = pd.read_csv('https://assets.fundsindia.com/articles/wp-content/uploads/2019/07/2018_weather.csv')
使用 pandas 库,我们可以读取 CSV 文件并将其转换为一个 DataFrame 对象,如下所示:
weather_data = pd.read_csv('https://assets.fundsindia.com/articles/wp-content/uploads/2019/07/2018_weather.csv') weather_data['Date'] = pd.to_datetime(weather_data['Date'], format='%Y-%m-%d') weather_data = weather_data.set_index('Date')
我们将使用 Bokeh 库创建两个图表:一个是关于温度的折线图,另一个是关于湿度的折线图。
# 创建一个包含温度数据的数据源 temp_data = ColumnDataSource(weather_data[['Temperature']]) # 创建一个包含湿度数据的数据源 humidity_data = ColumnDataSource(weather_data[['Humidity']]) # 创建一个绘图工具,并添加温度数据 temp_fig = figure(sizing_mode='scale_width', plot_height=300, x_axis_type='datetime') temp_fig.line('Date', 'Temperature', source=temp_data) # 创建一个绘图工具,并添加湿度数据 humidity_fig = figure(sizing_mode='scale_width', plot_height=300, x_axis_type='datetime') humidity_fig.line('Date', 'Humidity', source=humidity_data)
同时,我们还可以添加一个可拖动的日期范围工具和悬停工具。
data_range_tool = RangeTool(x_range=temp_fig.x_range) data_range_tool.overlay.fill_color = 'blue' data_range_tool.overlay.fill_alpha = 0.2 temp_fig.add_tools(data_range_tool) temp_fig.toolbar.active_multi = data_range_tool hover_tool = HoverTool(mode='vline', tooltips=[('Temperature', '@Temperature'),('Humidity', '@Humidity')]) temp_fig.add_tools(hover_tool) humidity_fig.add_tools(hover_tool)
最后,我们将两个图表组合在一起,并使用 Bokeh 的布局工具来创建 Dashboard。
dashboard = column(temp_fig, humidity_fig) show(dashboard)
这就是我们完整的 10 行 Dashboard 代码。
总结
Dashboard 是一个重要的工具,可以帮助我们更好地理解数据,并帮助我们做出准确的决策。在本文中,我们介绍了一些 Dashboard 的基本概念,并展示了如何使用 Python 和 Bokeh 库创建一个简单的 Dashboard。希望这能对你有所帮助!
以上是dashboard简介:实时监控与数据可视化的利器的详细内容。更多信息请关注PHP中文网其他相关文章!

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...

如何使用正则表达式匹配到第一个闭合标签就停止?在处理HTML或其他标记语言时,常常需要使用正则表达式来�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

WebStorm Mac版
好用的JavaScript开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

Atom编辑器mac版下载
最流行的的开源编辑器