InnoDB存储引擎是基于磁盘存储的,并将其中的记录按照页的方式进行管理。在数据库系统中,由于CPU速度和磁盘速度之前的鸿沟,通常使用缓冲池技术来提高数据库的整体性能。
1. Innodb_buffer_pool
缓冲池(buffer pool)简单来说就是一块内存区域。缓冲池中缓存的数据页类型有:索引页、数据页、undo页、插入缓冲、自适应哈希索引、InnoDB存储的锁信息、数据字典信息等。不能简单认为,缓冲池只是缓存索引页和数据页,它们只是占缓冲池很大的一部分而已。
在数据库中进行读取页的操作,首先将从磁盘读到的页存放在缓冲池中,下一次再读相同的页时,首先判断该页是否在缓冲池中。若在,称该页在缓冲池中被命中,直接读取该页。否则,读取磁盘中的页。
root@rac3 mysql> show global status like 'Innodb_buffer_pool_%';+---------------------------------------+--------+| Variable_name | Value |+---------------------------------------+--------+| Innodb_buffer_pool_pages_data | 1118 || Innodb_buffer_pool_pages_dirty | 0 || Innodb_buffer_pool_pages_flushed | 1950 || Innodb_buffer_pool_pages_free | 129951 || Innodb_buffer_pool_pages_misc | 3 || Innodb_buffer_pool_pages_total | 131072 || Innodb_buffer_pool_read_ahead_rnd | 0 || Innodb_buffer_pool_read_ahead | 311 || Innodb_buffer_pool_read_ahead_evicted | 0 || Innodb_buffer_pool_read_requests | 202858 || Innodb_buffer_pool_reads | 756 || Innodb_buffer_pool_wait_free | 0 || Innodb_buffer_pool_write_requests | 43825 |+---------------------------------------+--------+13 rows in set (0.00 sec)
从上面的值我们可以看出总共 131072 pages,还有 129951 是 Free 状态的,仅仅只有 1118 个 page 有数据, read 请求 202858 次,其中有 756 次所请求的数据在 buffer pool 中没有,也就是说有 756 次是通过读取物理磁盘来读取数据的,所以很容易也就得出了 Innodb Buffer Pool 的 Read 命中率大概在为:(202858 - 756)/ 202858 * 100% 。
Innodb 在修改数据的时候同样也只是修改 buffer pool中的数据,并不是在一个事务提交的时候就将buffer pool中被修改的数据同步到磁盘,而是通过另外一种支持事务的数据库系统常用的手段,将修改信息记录到相应的事务日志中。
我们的应用所修改的buffer pool中的数据都很随机,每次所做的修改都是一个或者少数几个数据页,多次修改的数据页也很少会连续。如果我们每次修改之后都将buffer pool的数据同步到磁盘, 那么磁盘就只能一直忙于频繁的随即读写操作。而事务日志在创建之初就是申请的连续的物理空间,而且每次写入都是紧接着之前的日志数据顺序的往后写入,基本上都是一个顺序的写入过程。所以,日志的写入操作远比同步buffer pool中被修改的数据要更快。
2. redo log_buffer
事务日志本身也有 buffer,也就是redo log_buffer,每次事务日志的写入并不是直接写入到文件,也都是暂时先写入到 redo log_buffer中,然后再在一定的事件触发下才会同步到文
事务日志文件的大小与 Innodb 的整体 IO 性能有非常大的关系。理论上来讲,日志文件越大,则 Buffer Pool 所需要做的刷新动作也就越少,性能也越高。但是,我们也不能忽略另外一个事情,那就是 当系统 Crash 之后的恢复。
Innodb中记录了每一次对数据库中的数据及索引所做的修改,以及与修改相关的事务信息。同时还记录了系统每次 checkpoint 与 log sequence number(日志序列号)。假设在某一时刻,MySQL Crash了,那么很显然,所有buffer pool中的数据都会丢失,也包括已经修改且没有来得及刷新到数据文件中的数据。难道我们就让这些数据丢失么?当然不会,当MySQL从Crash之后再次启动,Innodb 会通过比较事务日志中所记录的checkpoint信息和各个数据文件中的checkpoint信息,找到最后一次checkpoint所对应的log sequence number,然后通过事务日志中所记录的变更记录,将从 Crash 之前最后一次checkpoint往后的所有变更重新应用一次,同步所有的数据文件到一致状态,这样就找回了因为系统 Crash 而造成的所有数据丢失。当然,对于 log buffer中未来得及同步到日志文件的变更数据就无法再找回了。系统 Crash 的时间离最后一次 checkpoint 的时间越长,所需要的恢复时间也就越长。而日志文件越大,Innodb 所做的 checkpoint 频率也越低,自然遇到长时间恢复的可能性也就越大了。
2.1 checkpoint
在InnoDB存储引擎中,可能发生如下几种情况的Fuzzy Checkpoint:
(1)Master Thread Checkpoint
对于Master Thread中发生的checkpoint,差不多以每秒或每十秒的速度从缓冲池的脏页列表中刷新一定比例的页回磁盘。这个过程是异步的,即此时InnoDB存储引擎可以进行其他的操作,用户查询线程不会阻塞。
(2)FLUSH_LRU_LIST Checkpoint
InnoDB存储引擎需要保证LRU列表中需要有差不多100个空闲页可供使用。若没有100个空闲页,那么InnoDB存储引擎会将LRU列表尾端的页移除。如果这些页中有脏页,那么需要进行checkpoint。这些页是来自LRU列表的,因此称为FLUSH_LRU_LIST Checkpoint。
(3)Async/Sync Flush Checkpoint
Async/Sync Flush Checkpoint是为了保证redo log的循环使用可用性。
(4)Dirty Page too much Checkpoint
脏页的数量太多,导致InnoDB存储引擎强制进行Checkpoint。可由参数innodb_max_dirty_pages_pct控制。
root@rac3 mysql> show variables like 'innodb_max_dirty_pages_pct'/G*************************** 1. row ***************************Variable_name: innodb_max_dirty_pages_pctValue: 851 row in set (0.00 sec)
innodb_max_dirty_pages_pct的值为85,表示当缓冲池中脏页的数量占据85%时,强制进行checkpoint,刷新一部分的脏页到磁盘。
2.2 innodb_flush_log_at_trx_commit
参数innodb_flush_log_at_trx_commit用来控制事务日志刷新到磁盘的策略。
默认innodb_flush_log_at_trx_commit=1,表示在每次事务提交的时候,都把log buffer刷到文件系统中去,并且调用文件系统的“flush”操作将缓存刷新到磁盘上去。这样的话,数据库对IO的要求就非常高了,如果底层的硬件提供的IOPS比较差,那么MySQL数据库的并发很快就会由于硬件IO的问题而无法提升。为了提高效率,保证并发,牺牲一定的数据一致性。innodb_flush_log_at_trx_commit还可以设置为0和2。
innodb_flush_log_at_trx_commit=0时,提交事务时并不将log buffer写入磁盘,而是等待主线程每秒的刷新。
innodb_flush_log_at_trx_commit=2时,事务提交时将事务日志写入redo log file,但仅写入文件系统的缓存,不进行fsync操作。在这个设置下,当MySQL数据库发生宕机而操作系统不发生宕机,并不会导致事务的丢失。

MySQL索引基数对查询性能有显着影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL学习路径包括基础知识、核心概念、使用示例和优化技巧。1)了解表、行、列、SQL查询等基础概念。2)学习MySQL的定义、工作原理和优势。3)掌握基本CRUD操作和高级用法,如索引和存储过程。4)熟悉常见错误调试和性能优化建议,如合理使用索引和优化查询。通过这些步骤,你将全面掌握MySQL的使用和优化。

MySQL在现实世界的应用包括基础数据库设计和复杂查询优化。1)基本用法:用于存储和管理用户数据,如插入、查询、更新和删除用户信息。2)高级用法:处理复杂业务逻辑,如电子商务平台的订单和库存管理。3)性能优化:通过合理使用索引、分区表和查询缓存来提升性能。

MySQL中的SQL命令可以分为DDL、DML、DQL、DCL等类别,用于创建、修改、删除数据库和表,插入、更新、删除数据,以及执行复杂的查询操作。1.基本用法包括CREATETABLE创建表、INSERTINTO插入数据和SELECT查询数据。2.高级用法涉及JOIN进行表联接、子查询和GROUPBY进行数据聚合。3.常见错误如语法错误、数据类型不匹配和权限问题可以通过语法检查、数据类型转换和权限管理来调试。4.性能优化建议包括使用索引、避免全表扫描、优化JOIN操作和使用事务来保证数据一致性

InnoDB通过undolog实现原子性,通过锁机制和MVCC实现一致性和隔离性,通过redolog实现持久性。1)原子性:使用undolog记录原始数据,确保事务可回滚。2)一致性:通过行级锁和MVCC确保数据一致。3)隔离性:支持多种隔离级别,默认使用REPEATABLEREAD。4)持久性:使用redolog记录修改,确保数据持久保存。

MySQL在数据库和编程中的地位非常重要,它是一个开源的关系型数据库管理系统,广泛应用于各种应用场景。1)MySQL提供高效的数据存储、组织和检索功能,支持Web、移动和企业级系统。2)它使用客户端-服务器架构,支持多种存储引擎和索引优化。3)基本用法包括创建表和插入数据,高级用法涉及多表JOIN和复杂查询。4)常见问题如SQL语法错误和性能问题可以通过EXPLAIN命令和慢查询日志调试。5)性能优化方法包括合理使用索引、优化查询和使用缓存,最佳实践包括使用事务和PreparedStatemen

MySQL适合小型和大型企业。1)小型企业可使用MySQL进行基本数据管理,如存储客户信息。2)大型企业可利用MySQL处理海量数据和复杂业务逻辑,优化查询性能和事务处理。

InnoDB通过Next-KeyLocking机制有效防止幻读。1)Next-KeyLocking结合行锁和间隙锁,锁定记录及其间隙,防止新记录插入。2)在实际应用中,通过优化查询和调整隔离级别,可以减少锁竞争,提高并发性能。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

记事本++7.3.1
好用且免费的代码编辑器