2017 年,Vaswani 等人发表的 《Attention is all you need》成为神经网络架构发展的一个重要里程碑。这篇论文的核心贡献是自注意机制,这是 Transformers 区别于传统架构的创新之处,在其卓越的实用性能中发挥了重要作用。 事实上,这一创新已成为计算机视觉和自然语言处理等领域人工智能进步的关键催化剂,同时在大语言模型的出现中也起到了关键作用。因此,了解 Transformers,尤其是自注意处理数据的机制,是一个至关重要但在很大程度上尚未充分研究的领域。
论文地址:https://arxiv.org/pdf/2312.10794.pdf 深度神经网络(DNNs)有一个共同特征:输入数据按照顺序,被逐层处理,形成一个时间离散的动态系统(具体内容可以参考 MIT 出版的《深度学习》,国内也被称为「花书」)。这种观点已被成功地用于将残差网络建模到时间连续的动态系统上,后者被称为神经常微分方程(neural ODEs)。在神经常微分方程中,输入图像 在时间间隔 (0,T) 上会按照给定的时变速度场 进行演化。因此,DNN 可以看作是从一个 到另一个的流映射(Flow Map)。即使在经典 DNN 架构限制下的速度场中,流映射之间也具有很强的相似性。 研究者们发现,Transformers 实际上是在上的流映射,即 d 维概率测度空间(the space of probability measures)间的映射。为了实现这种在度量空间间进行转换的流映射,Transformers 需要建立了一个平均场相互作用的粒子系统(mean-field interacting particle system.)。 具体来说,每个粒子(在深度学习语境下可以理解为 token)都遵循向量场的流动,流动取决于所有粒子的经验测度(empirical measure)。反过来,方程决定了粒子经验测量的演变进程,这个过程可能会持续很长时间,需要进行持续关注。 对此,研究者的主要观察结果是,粒子们往往最终会聚集到一起。这种现象在诸如单向推导(即预测序列中的下一个词)的学习任务中会尤为明显。输出度量对下一个 token 的概率分布进行编码,根据聚类结果就可以筛选出少量可能的结果。 本文的研究结果表明,极限分布实际上是一个点质量,不存在多样性或随机性,但这与实际观测结果不符。这一明显的悖论因粒子存在长时间的可变状态得到解决。从图 2 和图 4 中可以看出,Transformers 具有两种不同的时间尺度:在第一阶段,所有 token 迅速形成几个簇,而在第二阶段(较第一阶段速度慢得多),通过簇的成对合并过程,所有 token 最终坍缩为一个点。