搜索
首页科技周边人工智能一个超强 Pytorch 操作!!

一个超强 Pytorch 操作!!

Jan 06, 2024 pm 09:02 PM
函数pytorch

嗨,小壮!很高兴见到你!有什么我可以帮助你的吗?

我已经分享了一些关于深度学习的内容,在这几天里。

另外,在Pytorch中也存在着一些类似于numpy和pandas的常用数据处理函数,它们同样具有重要性和趣味性!

同样,PyTorch也提供了许多函数用于数据处理和转换。

现在让我们来看一下最重要的几个必备函数。

一个超强 Pytorch 操作!!

torch.Tensor

在PyTorch中,torch.Tensor是一种基本的数据结构,用于表示张量。张量是一种多维数组,可以包含数字、布尔值等不同类型的数据。你可以使用torch.Tensor的构造函数来创建张量,也可以使用其他函数来创建。

import torch# 创建一个空的张量empty_tensor = torch.Tensor()# 从列表创建张量data = [1, 2, 3, 4]tensor_from_list = torch.Tensor(data)

torch.from_numpy

用于将NumPy数组转换为PyTorch张量。

import numpy as npnumpy_array = np.array([1, 2, 3, 4])torch_tensor = torch.from_numpy(numpy_array)

torch.Tensor.item

用于从只包含一个元素的张量中提取Python数值。适用于标量张量。

scalar_tensor = torch.tensor(5)scalar_value = scalar_tensor.item()

torch.Tensor.view

用于改变张量的形状。

original_tensor = torch.randn(2, 3)# 2x3的随机张量reshaped_tensor = original_tensor.view(3, 2)# 将形状改变为3x2

torch.Tensor.to

用于将张量转换到指定的设备(如CPU或GPU)。

cpu_tensor = torch.randn(3)gpu_tensor = cpu_tensor.to("cuda")# 将张量移动到GPU

torch.Tensor.numpy

将张量转换为NumPy数组。

pytorch_tensor = torch.tensor([1, 2, 3])numpy_array = pytorch_tensor.numpy()

torch.nn.functional.one_hot

用于对整数张量进行独热编码。

import torch.nn.functional as Finteger_tensor = torch.tensor([0, 2, 1])one_hot_encoded = F.one_hot(integer_tensor)

torch.utils.data.Dataset和torch.utils.data.DataLoader

用于加载和处理数据集。这两个类通常与自定义的数据集类一起使用。

from torch.utils.data import Dataset, DataLoaderclass CustomDataset(Dataset):def __init__(self, data):self.data = datadef __len__(self):return len(self.data)def __getitem__(self, index):return self.data[index]dataset = CustomDataset([1, 2, 3, 4, 5])dataloader = DataLoader(dataset, batch_size=2, shuffle=True)

以上这些是PyTorch中一些重要的数据转换函数,进行了简单的使用。

它们对于处理和准备深度学习任务中的数据非常非常有帮助。

一个案例

接下来,我们制作一个图像分割的案例。

在这个案例中,我们将使用PyTorch和torchvision库进行图像分割,使用预训练的DeepLabV3模型和PASCAL VOC数据集。

在整个的代码中,涉及到上面所学到的内容,调整大小、裁剪、标准化等。

import torchimport torchvision.transforms as transformsfrom torchvision import modelsfrom PIL import Imageimport matplotlib.pyplot as plt# 下载示例图像!wget -O example_image.jpg https://pytorch.org/assets/deeplab/deeplab1.jpg# 定义图像转换transform = transforms.Compose([transforms.Resize((256, 256)),# 调整大小transforms.ToTensor(), # 转换为张量transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])# 标准化])# 加载并转换图像image_path = 'example_image.jpg'image = Image.open(image_path).convert("RGB")input_tensor = transform(image).unsqueeze(0)# 添加批次维度# 加载预训练的DeepLabV3模型model = models.segmentation.deeplabv3_resnet101(pretrained=True)model.eval()# 进行图像分割with torch.no_grad():output = model(input_tensor)['out'][0]output_predictions = output.argmax(0)# 将预测结果转换为彩色图像def decode_segmap(image, nc=21):label_colors = np.array([(0, 0, 0),# 0: 背景 (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128),# 1-5: 物体 (0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0),# 6-9: 道路 (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128),# 10-13: 面部 (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0),# 14-17: 植物 (0, 192, 0), (128, 192, 0), (0, 64, 128)])# 18-20: 建筑r = np.zeros_like(image).astype(np.uint8)g = np.zeros_like(image).astype(np.uint8)b = np.zeros_like(image).astype(np.uint8)for l in range(0, nc):idx = image == lr[idx] = label_colors[l, 0]g[idx] = label_colors[l, 1]b[idx] = label_colors[l, 2]rgb = np.stack([r, g, b], axis=2)return rgb# 将预测结果转换为彩色图像output_rgb = decode_segmap(output_predictions.numpy())# 可视化原始图像和分割结果plt.figure(figsize=(12, 6))plt.subplot(1, 2, 1)plt.imshow(image)plt.title('Original Image')plt.subplot(1, 2, 2)plt.imshow(output_rgb)plt.title('Segmentation Result')plt.show()

在这个案例中,我们首先定义了一系列图像转换函数,包括调整大小、转换为张量和标准化。这些转换确保输入图像满足模型的需求。

然后,加载了一个示例图像并应用了这些转换。

接下来,我们使用了torchvision中预训练的DeepLabV3模型来进行图像分割。对于输出,我们提取了预测结果的最大值索引,以获得每个像素的预测类别。

最后,我们将预测结果转换为彩色图像,并可视化原始图像和分割结果。

一个超强 Pytorch 操作!!

这个案例强调了图像转换函数在图像分割任务中的重要作用,确保输入图像符合模型的输入要求,并且输出结果易于可视化。

以上是一个超强 Pytorch 操作!!的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
微软工作趋势指数2025显示工作场所容量应变微软工作趋势指数2025显示工作场所容量应变Apr 24, 2025 am 11:19 AM

由于AI的快速整合而加剧了工作场所的迅速危机危机,要求战略转变以外的增量调整。 WTI的调查结果强调了这一点:68%的员工在工作量上挣扎,导致BUR

AI可以理解吗?中国房间的论点说不,但是对吗?AI可以理解吗?中国房间的论点说不,但是对吗?Apr 24, 2025 am 11:18 AM

约翰·塞尔(John Searle)的中国房间论点:对AI理解的挑战 Searle的思想实验直接质疑人工智能是否可以真正理解语言或具有真正意识。 想象一个人,对下巴一无所知

中国的'智能” AI助手回应微软召回的隐私缺陷中国的'智能” AI助手回应微软召回的隐私缺陷Apr 24, 2025 am 11:17 AM

与西方同行相比,中国的科技巨头在AI开发方面的课程不同。 他们不专注于技术基准和API集成,而是优先考虑“屏幕感知” AI助手 - AI T

Docker将熟悉的容器工作流程带到AI型号和MCP工具Docker将熟悉的容器工作流程带到AI型号和MCP工具Apr 24, 2025 am 11:16 AM

MCP:赋能AI系统访问外部工具 模型上下文协议(MCP)让AI应用能够通过标准化接口与外部工具和数据源交互。由Anthropic开发并得到主要AI提供商的支持,MCP允许语言模型和智能体发现可用工具并使用合适的参数调用它们。然而,实施MCP服务器存在一些挑战,包括环境冲突、安全漏洞以及跨平台行为不一致。 Forbes文章《Anthropic的模型上下文协议是AI智能体发展的一大步》作者:Janakiram MSVDocker通过容器化解决了这些问题。基于Docker Hub基础设施构建的Doc

使用6种AI街头智能策略来建立一家十亿美元的创业使用6种AI街头智能策略来建立一家十亿美元的创业Apr 24, 2025 am 11:15 AM

有远见的企业家采用的六种策略,他们利用尖端技术和精明的商业敏锐度来创造高利润的可扩展公司,同时保持控制权。本指南是针对有抱负的企业家的,旨在建立一个

Google照片更新解锁了您所有图片的惊人Ultra HDRGoogle照片更新解锁了您所有图片的惊人Ultra HDRApr 24, 2025 am 11:14 AM

Google Photos的新型Ultra HDR工具:改变图像增强的游戏规则 Google Photos推出了一个功能强大的Ultra HDR转换工具,将标准照片转换为充满活力的高动态范围图像。这种增强功能受益于摄影师

Descope建立AI代理集成的身份验证框架Descope建立AI代理集成的身份验证框架Apr 24, 2025 am 11:13 AM

技术架构解决了新兴的身份验证挑战 代理身份集线器解决了许多组织仅在开始AI代理实施后发现的问题,即传统身份验证方法不是为机器设计的

Google Cloud Next 2025以及现代工作的未来Google Cloud Next 2025以及现代工作的未来Apr 24, 2025 am 11:12 AM

(注意:Google是我公司的咨询客户,Moor Insights&Strateging。) AI:从实验到企业基金会 Google Cloud Next 2025展示了AI从实验功能到企业技术的核心组成部分的演变,

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。