搜索
首页数据库mysql教程Alex的Hadoop菜鸟教程:第9课Sqoop1从Hbase或者Hive导出mysql_MySQL

今天讲讲怎么用sqoop将Hbase或者Hive的东西导出到mysql。不过事先要告诉大家

目前sqoop没有办法把数据直接从Hbase导出到mysql。必须要通过Hive建立2个表,一个外部表是基于这个Hbase表的,另一个是单纯的基于hdfs的hive原生表,然后把外部表的数据导入到原生表(临时),然后通过hive将临时表里面的数据导出到mysql

数据准备

mysql建立空表


CREATE TABLE `employee` ( 
  `rowkey` int(11) NOT NULL,
  `id` int(11) NOT NULL,
  `name` varchar(20) NOT NULL,    
  PRIMARY KEY (`id`)    
) ENGINE=MyISAM  DEFAULT CHARSET=utf8; 



注意:因为大家习惯性的把hive表用于映射Hbase的rowkey的字段命名为key,所以在建立mysql的table的时候有可能也建立对应的key字段,但是key是mysql的保留字,会导致insert语句无法插入的问题

Hbase建立employee表

建立employee表,并插入数据
hbase(main):005:0> create 'employee','info'
0 row(s) in 0.4740 seconds

=> Hbase::Table - employee
hbase(main):006:0> put 'employee',1,'info:id',1
0 row(s) in 0.2080 seconds

hbase(main):008:0> scan 'employee'
ROW                                      COLUMN+CELL                                                                                                           
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                      
1 row(s) in 0.0610 seconds

hbase(main):009:0> put 'employee',1,'info:name','peter'
0 row(s) in 0.0220 seconds

hbase(main):010:0> scan 'employee'
ROW                                      COLUMN+CELL                                                                                                           
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                      
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                
1 row(s) in 0.0450 seconds

hbase(main):011:0> put 'employee',2,'info:id',2
0 row(s) in 0.0370 seconds

hbase(main):012:0> put 'employee',2,'info:name','paul'
0 row(s) in 0.0180 seconds

hbase(main):013:0> scan 'employee'
ROW                                      COLUMN+CELL                                                                                                           
 1                                       column=info:id, timestamp=1417591291730, value=1                                                                      
 1                                       column=info:name, timestamp=1417591321072, value=peter                                                                
 2                                       column=info:id, timestamp=1417591500179, value=2                                                                      
 2                                       column=info:name, timestamp=1417591512075, value=paul                                                                 
2 row(s) in 0.0440 seconds

建立Hive外部表

hive 有分为原生表和外部表,原生表是以简单文件方式存储在hdfs里面,外部表依赖别的框架,比如Hbase,我们现在建立一个依赖于我们刚刚建立的employee hbase表的hive 外部表
hive> CREATE EXTERNAL TABLE h_employee(key int, id int, name string) 
    > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
    > WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key, info:id,info:name")
    > TBLPROPERTIES ("hbase.table.name" = "employee");
OK
Time taken: 0.324 seconds
hive> select * from h_employee;
OK
1	1	peter
2	2	paul
Time taken: 1.129 seconds, Fetched: 2 row(s)

建立Hive原生表

这个hive原生表只是用于导出的时候临时使用的,所以取名叫 h_employee_export,字段之间的分隔符用逗号
CREATE TABLE h_employee_export(key INT, id INT, name STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\054';

我们去看下实际存储的文本文件是什么样子的
$ hdfs dfs -cat /user/hive/warehouse/h_employee_export/000000_0
1,1,peter
2,2,paul


源Hive表导入数据到临时表


第一步先将数据从 h_employee(基于Hbase的外部表)导入到 h_employee_export(原生Hive表)
hive> insert overwrite table h_employee_export select * from h_employee;
hive> select * from h_employee_export;
OK
1	1	peter
2	2	paul
Time taken: 0.359 seconds, Fetched: 2 row(s)

我们去看下实际存储的文本文件长什么样子
$ hdfs dfs -cat /user/hive/warehouse/h_employee_export/000000_0
1,1,peter
2,2,paul



从Hive导出数据到mysql


$ sqoop export --connect jdbc:mysql://localhost:3306/sqoop_test --username root --password root --table employee --m 1 --export-dir /user/hive/warehouse/h_employee_export/
Warning: /usr/lib/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /usr/lib/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
14/12/05 08:49:35 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.0.1
14/12/05 08:49:35 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
14/12/05 08:49:35 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/12/05 08:49:35 INFO tool.CodeGenTool: Beginning code generation
14/12/05 08:49:36 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1
14/12/05 08:49:36 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `employee` AS t LIMIT 1
14/12/05 08:49:36 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /usr/lib/hadoop-mapreduce
Note: /tmp/sqoop-wlsuser/compile/d16eb4166baf6a1e885d7df0e2638685/employee.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/12/05 08:49:39 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-wlsuser/compile/d16eb4166baf6a1e885d7df0e2638685/employee.jar
14/12/05 08:49:39 INFO mapreduce.ExportJobBase: Beginning export of employee
14/12/05 08:49:41 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/12/05 08:49:43 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
14/12/05 08:49:43 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
14/12/05 08:49:43 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/12/05 08:49:43 INFO client.RMProxy: Connecting to ResourceManager at hadoop01/192.111.78.111:8032
14/12/05 08:49:45 INFO input.FileInputFormat: Total input paths to process : 1
14/12/05 08:49:45 INFO input.FileInputFormat: Total input paths to process : 1
14/12/05 08:49:45 INFO mapreduce.JobSubmitter: number of splits:1
14/12/05 08:49:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1406097234796_0037
14/12/05 08:49:46 INFO impl.YarnClientImpl: Submitted application application_1406097234796_0037
14/12/05 08:49:46 INFO mapreduce.Job: The url to track the job: http://hadoop01:8088/proxy/application_1406097234796_0037/
14/12/05 08:49:46 INFO mapreduce.Job: Running job: job_1406097234796_0037
14/12/05 08:49:59 INFO mapreduce.Job: Job job_1406097234796_0037 running in uber mode : false
14/12/05 08:49:59 INFO mapreduce.Job:  map 0% reduce 0%
14/12/05 08:50:10 INFO mapreduce.Job:  map 100% reduce 0%
14/12/05 08:50:10 INFO mapreduce.Job: Job job_1406097234796_0037 completed successfully
14/12/05 08:50:10 INFO mapreduce.Job: Counters: 30
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=99761
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=166
		HDFS: Number of bytes written=0
		HDFS: Number of read operations=4
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=0
	Job Counters 
		Launched map tasks=1
		Data-local map tasks=1
		Total time spent by all maps in occupied slots (ms)=8805
		Total time spent by all reduces in occupied slots (ms)=0
		Total time spent by all map tasks (ms)=8805
		Total vcore-seconds taken by all map tasks=8805
		Total megabyte-seconds taken by all map tasks=9016320
	Map-Reduce Framework
		Map input records=2
		Map output records=2
		Input split bytes=144
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=97
		CPU time spent (ms)=1360
		Physical memory (bytes) snapshot=167555072
		Virtual memory (bytes) snapshot=684212224
		Total committed heap usage (bytes)=148897792
	File Input Format Counters 
		Bytes Read=0
	File Output Format Counters 
		Bytes Written=0
14/12/05 08:50:10 INFO mapreduce.ExportJobBase: Transferred 166 bytes in 27.0676 seconds (6.1328 bytes/sec)
14/12/05 08:50:10 INFO mapreduce.ExportJobBase: Exported 2 records.




注意
在这段日志中有这样一句话
14/12/05 08:49:46 INFO mapreduce.Job: The url to track the job: http://hadoop01:8088/proxy/application_1406097234796_0037/

意思是你可以用浏览器访问这个地址去看下任务的执行情况,如果你的任务长时间卡主没结束就是出错了,可以去这个地址查看详细的错误日志

查看结果
mysql> select * from employee;
+--------+----+-------+
| rowkey | id | name  |
+--------+----+-------+
|      1 |  1 | peter |
|      2 |  2 | paul  |
+--------+----+-------+
2 rows in set (0.00 sec)

mysql> 

导入成功

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用Alter Table语句在MySQL中更改表?如何使用Alter Table语句在MySQL中更改表?Mar 19, 2025 pm 03:51 PM

本文讨论了使用MySQL的Alter Table语句修改表,包括添加/删除列,重命名表/列以及更改列数据类型。

如何为MySQL连接配置SSL/TLS加密?如何为MySQL连接配置SSL/TLS加密?Mar 18, 2025 pm 12:01 PM

文章讨论了为MySQL配置SSL/TLS加密,包括证书生成和验证。主要问题是使用自签名证书的安全含义。[角色计数:159]

您如何处理MySQL中的大型数据集?您如何处理MySQL中的大型数据集?Mar 21, 2025 pm 12:15 PM

文章讨论了处理MySQL中大型数据集的策略,包括分区,碎片,索引和查询优化。

哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什么?哪些流行的MySQL GUI工具(例如MySQL Workbench,PhpMyAdmin)是什么?Mar 21, 2025 pm 06:28 PM

文章讨论了流行的MySQL GUI工具,例如MySQL Workbench和PhpMyAdmin,比较了它们对初学者和高级用户的功能和适合性。[159个字符]

如何使用Drop Table语句将表放入MySQL中?如何使用Drop Table语句将表放入MySQL中?Mar 19, 2025 pm 03:52 PM

本文讨论了使用Drop Table语句在MySQL中放下表,并强调了预防措施和风险。它强调,没有备份,该动作是不可逆转的,详细介绍了恢复方法和潜在的生产环境危害。

您如何用外国钥匙代表关系?您如何用外国钥匙代表关系?Mar 19, 2025 pm 03:48 PM

文章讨论了使用外国密钥来代表数据库中的关系,重点是最佳实践,数据完整性和避免的常见陷阱。

如何在JSON列上创建索引?如何在JSON列上创建索引?Mar 21, 2025 pm 12:13 PM

本文讨论了在PostgreSQL,MySQL和MongoDB等各个数据库中的JSON列上创建索引,以增强查询性能。它解释了索引特定的JSON路径的语法和好处,并列出了支持的数据库系统。

如何保护MySQL免受常见漏洞(SQL注入,蛮力攻击)?如何保护MySQL免受常见漏洞(SQL注入,蛮力攻击)?Mar 18, 2025 pm 12:00 PM

文章讨论了使用准备好的语句,输入验证和强密码策略确保针对SQL注入和蛮力攻击的MySQL。(159个字符)

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
2 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具