搜索
首页科技周边人工智能不到1000行代码,PyTorch团队让Llama 7B提速10倍

PyTorch 团队亲自教你如何加速大模型推理。

在过去的一年里,生成式 AI 发展迅猛,在这当中,文本生成一直是一个特别受欢迎的领域,很多开源项目如 llama.cpp、vLLM 、 MLC-LLM 等,为了取得更好的效果,都在进行不停的优化。

作为机器学习社区中最受欢迎框架之一的 PyTorch,自然也是抓住了这一新的机遇,不断优化。为此让大家更好的了解这些创新,PyTorch 团队专门设置了系列博客,重点介绍如何使用纯原生 PyTorch 加速生成式 AI 模型。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

代码地址:https://github.com/pytorch-labs/gpt-fast

在第一篇博客中,PyTorch 团队展示了仅使用纯原生 PyTorch 重写 Segment Anything(SAM)模型,比原始实现快 8 倍。在本博客中,他们又为我们带来了新的内容,即如何加快 LLM 推理。

我们先来看看结果,该团队重写 LLM,推理速度比基线足足快了 10 倍,并且没有损失准确率,只用了不到 1000 行的纯原生 PyTorch 代码!

不到1000行代码,PyTorch团队让Llama 7B提速10倍

所有基准测试都在 A100-80GB 上运行的,功率限制在 330W。

这些优化包括:

  • Torch.compile:PyTorch 模型编译器, PyTorch 2.0 加入了一个新的函数,叫做 torch.compile (),能够通过一行代码对已有的模型进行加速;
  • GPU 量化:通过降低运算精度来加速模型;
  • Speculative Decoding:一种大模型推理加速方法,使用一个小的「draft」模型来预测大的「目标」模型的输出;
  • 张量并行:通过在多个设备上运行模型来加速模型推理。

接下来,我们看看每一步都是如何实现的。

6 步加快大模型推理

该研究表示,在没有优化之前,大模型的推理性能为 25.5 tok/s,效果不是很好:

不到1000行代码,PyTorch团队让Llama 7B提速10倍

经过一番探索后终于找到了原因:CPU 开销过大。然后就有了下面的 6 步优化过程。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

第一步:通过 Torch.compile 和静态 KV 缓存减少 CPU 开销,实现 107.0 TOK/S

torch.compile 允许用户将更大的区域捕获到单个编译区域中,特别是在 mode=”reduce-overhead” 时(参考下面的代码),这一功能对于减少 CPU 开销非常有效,除此以外,本文还指定 fullgraph=True,用来验证模型中没有「图形中断」(即 torch.compile 无法编译的部分)。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

然而,即使有 torch.compile 的加持,还是会遇到一些障碍。

第一个障碍是 kv 缓存。即当用户生成更多的 token 时, kv 缓存的「逻辑长度(logical length)」会增长。出现这种问题有两个原因:一是每次缓存增长时重新分配(和复制)kv 缓存的成本非常高;其次,这种动态分配使得减少开销变得更加困难。

为了解决这个问题,本文使用静态 KV 缓存,静态分配 KV 缓存的大小,然后屏蔽掉注意力机制中未使用的值。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

第二个障碍是 prefill 阶段。用 Transformer 进行文本生成可视为一个两阶段过程:1. 用来处理整个提示的 prefill 阶段 2. 解码 token.

尽管 kv 缓存被设置为静态化,但由于提示长度可变 ,prefill 阶段仍然需要更多的动态性。因此,需要使用单独的编译策略来编译这两个阶段。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

虽然这些细节有点棘手,但实现起来并不困难,而且性能的提升是巨大的。这一通操作下来,性能提高了 4 倍多,从 25 tok/s 提高到 107 tok/s。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

第二步:通过 int8 权重量化缓解内存带宽瓶颈,实现 157.4 tok /s

通过上文,我们已经看到应用 torch.compile 、静态 kv 缓存等带来的巨大加速,但 PyTorch 团队并不满足于此,他们又找了其他角度进行优化。

他们认为加速生成式 AI 训练的最大瓶颈是将权重从 GPU 全局内存加载到寄存器的代价。换句话说,每次前向传播都需要「接触(touch)」GPU 上的每个参数。那么,理论上我们能够以多快的速度「接触」模型中的每个参数?

不到1000行代码,PyTorch团队让Llama 7B提速10倍

为了衡量这一点,本文使用模型带宽利用率(MBU),计算它非常简单,如下所示:

不到1000行代码,PyTorch团队让Llama 7B提速10倍

举例来说,对于一个 7B 参数模型,每个参数都存储在 fp16 中(每个参数 2 字节),可以实现 107 tokens/s。A100-80GB 理论上有 2 TB/s 的内存带宽。

如下图所示,将上述公式带入具体的数值,可以得到 MBU 为 72%!这个结果是相当不错的,因为很多研究很难突破 85%。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

但 PyTorch 团队还想将这个数值在提高一些。他们发现无法改变模型中参数的数量,也无法改变 GPU 的内存带宽。但他们发现可以更改每个参数存储的字节数!

不到1000行代码,PyTorch团队让Llama 7B提速10倍

因此,他们打算用 int8 量化。 

不到1000行代码,PyTorch团队让Llama 7B提速10倍

请注意,这仅是量化权重,计算本身仍然在 bf16 中完成。此外,有了 torch.compile,可以轻松生成 int8 量化的高效代码。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

不到1000行代码,PyTorch团队让Llama 7B提速10倍

就像上图所展示的,从深蓝色线(torch.compile + int8)可以看出,使用 torch.compile + int8 仅权重量化时,性能有显着提升。

将 int8 量化应用于 Llama-7B 模型,性能提高了约 50%,达到 157.4 tokens/s。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

第三步:使用 Speculative Decoding

即使在使用了 int8 量化等技术之后,该团队仍然面临着另一个问题,即为了生成 100 个 token,必须加载权重 100 次。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

即使权重被量化,一遍又一遍地加载权重也避免不了,这种问题该如何解决呢?事实证明,利用 speculative decoding 能够打破这种严格的串行依赖性并获得加速。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

该研究使用草稿(draft)模型生成 8 个 token,然后使用验证器模型并行处理,丢弃不匹配的 token。这一过程打破了串行依赖。整个实现过程大约 50 行原生 PyTorch 代码。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

第四步:使用 int4 量化和 GPTQ 方法进一步减小权重,实现 202.1 tok/s

本文发现,当权重为 4-bits 时,模型的准确率开始下降。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

为了解决这个问题,本文使用两个技巧来解决:第一个是拥有更细粒度的缩放因子;另一种是使用更先进的量化策略。将这些操作组合在一起,得到如下:

不到1000行代码,PyTorch团队让Llama 7B提速10倍

第五步:将所有内容组合在一起,得到 244.7 tok/s

最后,将所有技术组合在一起以获得更好的性能,得到 244.7 tok/s。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

第六步:张量并行性

到目前为止,本文一直是在单个 GPU 上最大限度地减少延迟。其实,使用多个 GPU 也是可以的,这样一来,延迟现象会得到进一步改善。

非常庆幸的是,PyTorch 团队提供了张量并行的低级工具,只需 150 行代码,并且不需要任何模型更改。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

前面提到的所有优化都可以继续与张量并行性组合,将这些组合在一起,能以 55 tokens/s 的速度为 Llama-70B 模型提供 int8 量化。

不到1000行代码,PyTorch团队让Llama 7B提速10倍

最后,简单总结一下文章主要内容。在 Llama-7B 上,本文使用「compile + int4 quant + speculative decoding」这一套组合拳,实现 240+ tok/s。在 Llama-70B,本文还通过引入张量并行性以达到约 80 tok/s,这些都接近或超过 SOTA 性能。

原文链接:https://pytorch.org/blog/accelerating-generative-ai-2/

以上是不到1000行代码,PyTorch团队让Llama 7B提速10倍的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:机器之心。如有侵权,请联系admin@php.cn删除
及时工程中的思想图是什么及时工程中的思想图是什么Apr 13, 2025 am 11:53 AM

介绍 在迅速的工程中,“思想图”是指使用图理论来构建和指导AI的推理过程的新方法。与通常涉及线性S的传统方法不同

优化您的组织与Genai代理商的电子邮件营销优化您的组织与Genai代理商的电子邮件营销Apr 13, 2025 am 11:44 AM

介绍 恭喜!您经营一家成功的业务。通过您的网页,社交媒体活动,网络研讨会,会议,免费资源和其他来源,您每天收集5000个电子邮件ID。下一个明显的步骤是

Apache Pinot实时应用程序性能监视Apache Pinot实时应用程序性能监视Apr 13, 2025 am 11:40 AM

介绍 在当今快节奏的软件开发环境中,确保最佳应用程序性能至关重要。监视实时指标,例如响应时间,错误率和资源利用率可以帮助MAIN

Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Apr 13, 2025 am 11:23 AM

“您有几个用户?”他扮演。 阿尔特曼回答说:“我认为我们上次说的是每周5亿个活跃者,而且它正在迅速增长。” “你告诉我,就像在短短几周内翻了一番,”安德森继续说道。 “我说那个私人

pixtral -12b:Mistral AI'第一个多模型模型 - 分析Vidhyapixtral -12b:Mistral AI'第一个多模型模型 - 分析VidhyaApr 13, 2025 am 11:20 AM

介绍 Mistral发布了其第一个多模式模型,即Pixtral-12b-2409。该模型建立在Mistral的120亿参数Nemo 12B之上。是什么设置了该模型?现在可以拍摄图像和Tex

生成AI应用的代理框架 - 分析Vidhya生成AI应用的代理框架 - 分析VidhyaApr 13, 2025 am 11:13 AM

想象一下,拥有一个由AI驱动的助手,不仅可以响应您的查询,还可以自主收集信息,执行任务甚至处理多种类型的数据(TEXT,图像和代码)。听起来有未来派?在这个a

生成AI在金融部门的应用生成AI在金融部门的应用Apr 13, 2025 am 11:12 AM

介绍 金融业是任何国家发展的基石,因为它通过促进有效的交易和信贷可用性来推动经济增长。交易的便利和信贷

在线学习和被动攻击算法指南在线学习和被动攻击算法指南Apr 13, 2025 am 11:09 AM

介绍 数据是从社交媒体,金融交易和电子商务平台等来源的前所未有的速度生成的。处理这种连续的信息流是一个挑战,但它提供了

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。