有这样的一个需求:select count(distinct nick) from user_access_xx_xx;
这条sql用于统计用户访问的uv,由于单表的数据量在10G以上,即使在user_access_xx_xx上加上nick的索引,
通过查看执行计划,也为全索引扫描,sql在执行的时候,会对整个服务器带来抖动;
root@db 09:00:12>select count(distinct nick) from user_access; +———————-+ | count(distinct nick) | +———————-+ | 806934 | +———————-+ 1 row in set (52.78 sec)
执行一次sql需要花费52.78s,已经非常的慢了
现在需要换一种思路来解决该问题:
我们知道索引的值是按照索引字段升序的,比如我们对(nick,other_column)两个字段做了索引,那么在索引中的则是按照nick,other_column的升序排列:
我们现在的sql:select count(distinct nick) from user_access;则是直接从nick1开始一条条扫描下来,直到扫描到最后一个nick_n,
那么中间过程会扫描很多重复的nick,如果我们能够跳过中间重复的nick,则性能会优化非常多(在oracle中,这种扫描技术为loose index scan,但在5.1的版本中,mysql中还不能直接支持这种优化技术):
所以需要通过改写sql来达到伪loose index scan:
root@db 09:41:30>select count(*) from ( select distinct(nick) from user_access)t ; | count(*) | +———-+ | 806934 | 1 row in set (5.81 sec)
Sql中先选出不同的nick,最后在外面套一层,就可以得到nick的distinct值总和;
最重要的是在子查询中:select distinct(nick) 实现了上图中的伪loose index scan,优化器在这个时候的执行计划为Using index for group-by ,
需要注意的是mysql把distinct优化为group by,它首先利用索引来分组,然后扫描索引,对需要的nick只扫描一次;
两个sql的执行计划分别为:
优化写法:
root@db 09:41:10>explain select distinct(nick) from user_access-> ; +—-+————-+——————————+——-+—————+————-| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——————————+——-+—————+————- | 1 | SIMPLE | user_access | range | NULL | ind_user_access_nick | 67 | NULL | 2124695 | Using index for group-by | +—-+————-+——————————+——-+—————+————-
原始写法:
root@db 09:42:55>explain select count(distinct nick) from user_access; +—-+————-+——————————+——-+—————+————- | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——————————+——-+—————+————- | 1 | SIMPLE | user_access | index | NULL | ind_user_access | 177 | NULL | 19546123 | Using index |

存储过程是MySQL中的预编译SQL语句集合,用于提高性能和简化复杂操作。1.提高性能:首次编译后,后续调用无需重新编译。2.提高安全性:通过权限控制限制数据表访问。3.简化复杂操作:将多条SQL语句组合,简化应用层逻辑。

MySQL查询缓存的工作原理是通过存储SELECT查询的结果,当相同查询再次执行时,直接返回缓存结果。1)查询缓存提高数据库读取性能,通过哈希值查找缓存结果。2)配置简单,在MySQL配置文件中设置query_cache_type和query_cache_size。3)使用SQL_NO_CACHE关键字可以禁用特定查询的缓存。4)在高频更新环境中,查询缓存可能导致性能瓶颈,需通过监控和调整参数优化使用。

MySQL被广泛应用于各种项目中的原因包括:1.高性能与可扩展性,支持多种存储引擎;2.易于使用和维护,配置简单且工具丰富;3.丰富的生态系统,吸引大量社区和第三方工具支持;4.跨平台支持,适用于多种操作系统。

MySQL数据库升级的步骤包括:1.备份数据库,2.停止当前MySQL服务,3.安装新版本MySQL,4.启动新版本MySQL服务,5.恢复数据库。升级过程需注意兼容性问题,并可使用高级工具如PerconaToolkit进行测试和优化。

MySQL备份策略包括逻辑备份、物理备份、增量备份、基于复制的备份和云备份。1.逻辑备份使用mysqldump导出数据库结构和数据,适合小型数据库和版本迁移。2.物理备份通过复制数据文件,速度快且全面,但需数据库一致性。3.增量备份利用二进制日志记录变化,适用于大型数据库。4.基于复制的备份通过从服务器备份,减少对生产系统的影响。5.云备份如AmazonRDS提供自动化解决方案,但成本和控制需考虑。选择策略时应考虑数据库大小、停机容忍度、恢复时间和恢复点目标。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中优化数据库模式设计可通过以下步骤提升性能:1.索引优化:在常用查询列上创建索引,平衡查询和插入更新的开销。2.表结构优化:通过规范化或反规范化减少数据冗余,提高访问效率。3.数据类型选择:使用合适的数据类型,如INT替代VARCHAR,减少存储空间。4.分区和分表:对于大数据量,使用分区和分表分散数据,提升查询和维护效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

禅工作室 13.0.1
功能强大的PHP集成开发环境

Atom编辑器mac版下载
最流行的的开源编辑器

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器