在5.1.46中优化器在对primary key的选择上做了一点改动:
Performance: While looking for the shortest index for a covering index scan, the optimizer did not consider the full row length for a clustered primary key, as in InnoDB. Secondary covering indexes will now be preferred, making full table scans less likely。
该版本中增加了find_shortest_key函数,该函数的作用可以认为是选择最小key length的
索引来满足我们的查询。
该函数是怎么工作的:
代码如下:
What find_shortest_key should do is the following. If the primary key is a covering index
and is clustered, like in MyISAM, then the behavior today should remain the same. If the
primary key is clustered, like in InnoDB, then it should not consider using the primary
key because then the storage engine will have to scan through much more data.
调用Primary_key_is_clustered(),当返回值为true,执行find_shortest_key:选择key length最小的覆盖索引(Secondary covering indexes),然后来满足查询。
首先在5.1.45中测试:
$mysql -V mysql Ver 14.14 Distrib 5.1.45, for unknown-linux-gnu (x86_64) using EditLine wrapper root@test 03:49:45>create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb; Query OK, 0 rows affected (0.16 sec) root@test 03:49:47>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 root@test 03:49:51> root@test 03:49:51>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0
创建索引ind_1:
root@test 03:49:53>alter table test add index ind_1(name,d); Query OK, 0 rows affected (0.09 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 03:50:08>explain select count(*) from test; +—-+————-+——-+——-+—————+———+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+———+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | PRIMARY | 4 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+———+———+——+——+————-+ 1 row in set (0.00 sec)
添加ind_2:
root@test 08:04:35>alter table test add index ind_2(d); Query OK, 0 rows affected (0.07 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 08:04:45>explain select count(*) from test; +—-+————-+——-+——-+—————+———+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+———+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | PRIMARY | 4 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+———+———+——+——+————-+ 1 row in set (0.00 sec)
上面的版本【5.1.45】中,可以看到优化器选择使用主键来完成扫描,并没有使用ind_1,ind_2来完成查询;
接下来是:5.1.48
$mysql -V mysql Ver 14.14 Distrib 5.1.48, for unknown-linux-gnu (x86_64) using EditLine wrapper root@test 03:13:15> create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb; Query OK, 0 rows affected (0.00 sec) root@test 03:48:04>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now()); Query OK, 5 rows affected (0.00 sec) Records: 5 Duplicates: 0 Warnings: 0 root@test 03:48:05>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now()); Query OK, 5 rows affected (0.01 sec) Records: 5 Duplicates: 0 Warnings: 0
创建索引ind_1:
root@test 03:13:57>alter table test add index ind_1(name,d); Query OK, 0 rows affected (0.01 sec) Records: 0 Duplicates: 0 Warnings: 0 root@test 03:15:55>explain select count(*) from test; +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | ind_1 | 52 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ root@test 08:01:56>alter table test add index ind_2(d); Query OK, 0 rows affected (0.03 sec) Records: 0 Duplicates: 0 Warnings: 0 添加ind_2: root@test 08:02:09>explain select count(*) from test; +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ | 1 | SIMPLE | test | index | NULL | ind_2 | 9 | NULL | 10 | Using index | +—-+————-+——-+——-+—————+——-+———+——+——+————-+ 1 row in set (0.00 sec)
版本【5.1.48】中首先明智的选择ind_1来完成扫描,并没有考虑到使用主键(全索引扫描)来完成查询,随后添加ind_2,由于 ind_1的key长度是大于ind_2 key长度,所以mysql选择更优的ind_2来完成查询,可以看到mysql在选择方式上也在慢慢智能了。
观察性能:
5.1.48 root@test 08:49:32>set profiling =1; Query OK, 0 rows affected (0.00 sec) root@test 08:49:41>select count(*) from test; +———-+ | count(*) | +———-+ | 5242880 | +———-+ 1 row in set (1.18 sec) root@test 08:56:30>show profile cpu,block io for query 1; +——————————–+———-+———-+————+————–+—————+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +——————————–+———-+———-+————+————–+—————+ | starting | 0.000035 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000051 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000010 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 1.178452 | 1.177821 | 0.000000 | 0 | 0 | | end | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000040 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000086 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | +——————————–+———-+———-+————+————–+—————+
对比性能:
5.1.45 root@test 08:57:18>set profiling =1; Query OK, 0 rows affected (0.00 sec) root@test 08:57:21>select count(*) from test; +———-+ | count(*) | +———-+ | 5242880 | +———-+ 1 row in set (1.30 sec) root@test 08:57:27>show profile cpu,block io for query 1; +——————————–+———-+———-+————+————–+—————+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +——————————–+———-+———-+————+————–+—————+ | starting | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000041 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | Table lock | 0.000008 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000015 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000014 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000007 | 0.000000 | 0.000000 | 0 | 0 | | Sending data | 1.294178 | 1.293803 | 0.000000 | 0 | 0 | | end | 0.000016 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000040 | 0.000000 | 0.001000 | 0 | 0 | | logging slow query | 0.000002 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000080 | 0.000000 | 0.000000 | 0 | 0 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | +——————————–+———-+———-+————+————–+—————+
从上面的profile中可以看到在Sending data上,差异还是比较明显的,mysql不需要扫描整个表的页块,而是扫描表中索引key最短的索引页块来完成查询,这样就减少了很多不必要的数据。
PS:innodb是事务引擎,所以在叶子节点中除了存储本行记录外,还会多记录一些关于事务的信息(DB_TRX_ID ,DB_ROLL_PTR 等),因此单行长度额外开销20个字节左右,最直观的方法是将myisam转为innodb,存储空间会明显上升。那么在主表为t(id,name,pk(id)),二级索引ind_name(name,id),这个时候很容易混淆,即使只有两个字段,第一索引还是比第二索引要大(可以通过innodb_table_monitor观察表的的内部结构)在查询所有id的时候,优化器还是会选择第二索引ind_name。

MySQL和SQLite的主要区别在于设计理念和使用场景:1.MySQL适用于大型应用和企业级解决方案,支持高性能和高并发;2.SQLite适合移动应用和桌面软件,轻量级且易于嵌入。

MySQL中的索引是数据库表中一列或多列的有序结构,用于加速数据检索。1)索引通过减少扫描数据量提升查询速度。2)B-Tree索引利用平衡树结构,适合范围查询和排序。3)创建索引使用CREATEINDEX语句,如CREATEINDEXidx_customer_idONorders(customer_id)。4)复合索引可优化多列查询,如CREATEINDEXidx_customer_orderONorders(customer_id,order_date)。5)使用EXPLAIN分析查询计划,避

在MySQL中使用事务可以确保数据一致性。1)通过STARTTRANSACTION开始事务,执行SQL操作后用COMMIT提交或ROLLBACK回滚。2)使用SAVEPOINT可以设置保存点,允许部分回滚。3)性能优化建议包括缩短事务时间、避免大规模查询和合理使用隔离级别。

选择PostgreSQL而非MySQL的场景包括:1)需要复杂查询和高级SQL功能,2)要求严格的数据完整性和ACID遵从性,3)需要高级空间功能,4)处理大数据集时需要高性能。PostgreSQL在这些方面表现出色,适合需要复杂数据处理和高数据完整性的项目。

MySQL数据库的安全可以通过以下措施实现:1.用户权限管理:通过CREATEUSER和GRANT命令严格控制访问权限。2.加密传输:配置SSL/TLS确保数据传输安全。3.数据库备份和恢复:使用mysqldump或mysqlpump定期备份数据。4.高级安全策略:使用防火墙限制访问,并启用审计日志记录操作。5.性能优化与最佳实践:通过索引和查询优化以及定期维护兼顾安全和性能。

如何有效监控MySQL性能?使用mysqladmin、SHOWGLOBALSTATUS、PerconaMonitoringandManagement(PMM)和MySQLEnterpriseMonitor等工具。1.使用mysqladmin查看连接数。2.用SHOWGLOBALSTATUS查看查询数。3.PMM提供详细性能数据和图形化界面。4.MySQLEnterpriseMonitor提供丰富的监控功能和报警机制。

MySQL和SQLServer的区别在于:1)MySQL是开源的,适用于Web和嵌入式系统,2)SQLServer是微软的商业产品,适用于企业级应用。两者在存储引擎、性能优化和应用场景上有显着差异,选择时需考虑项目规模和未来扩展性。

在需要高可用性、高级安全性和良好集成性的企业级应用场景下,应选择SQLServer而不是MySQL。1)SQLServer提供企业级功能,如高可用性和高级安全性。2)它与微软生态系统如VisualStudio和PowerBI紧密集成。3)SQLServer在性能优化方面表现出色,支持内存优化表和列存储索引。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

Atom编辑器mac版下载
最流行的的开源编辑器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3汉化版
中文版,非常好用

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。