Labs 导读
随着互联网的发展,企业可以获得越来越多的数据。这些数据有助于企业更好地了解用户,即客户画像,并可以改善用户体验。然而,这些数据中可能存在大量未经标记的数据。如果所有数据都采用人工标记的方法,将会面临两个问题。首先,人工标记的时间成本较高,效率低下。随着数据量的增加,需要雇佣更多的人员和更长的时间,成本也会更高。其次,随着用户规模的增加,很难通过人工标记来跟上数据的增长速度
Part 01、 什么是半监督学习
半监督学习是指使用既有有标签的数据又有无标签的数据训练模型。半监督学习通常会基于有标签的数据构建属性空间,再从无标签的数据中提取有效信息填充(或重构)属性空间。因此,通常半监督学习的初始训练集会划分为有标签的数据集D1和无标签数据集D2,然后通过预处理、特征提取等基本步骤后训练半监督学习模型,然后将训练好的模型用于生产环境,为用户提供服务。
Part 02、半监督学习的假设
为了实现标签数据有效补充有标签数据中的“有用”信息,对数据分部等方面做出一些假设。半监督学习的基础假设是p(x)中包含p(y|x)的信息,即无标签的数据应该包含对于标签预测有用的且与有标签的数据不相同的或者很难从有标签的数据中提取出来的信息。此外,还存在一些服务于算法的假设。例如,相似性假设(平滑假设)是指在数据样本构建的属性空间中,相近或相似的样本具有相同的标签;低密度分离假设是指在数据样本少的地方存在一个决策边界能区分不同标签的数据。
以上假设主要目的是为了表明有标签的数据与无标签的数据来源于相同的数据分布。
Part 03、 半监督学习算法分类
半监督学习算法众多,可大致分为直推式学习(transductive learning)和 归纳式学习(Inductive model),二者区别在于用于模型评估的测试数据集的选择。直推式的半监督学习是指需要预测标签的数据集就是用于训练的无标签数据集,学习的目的是为了进一步提高预测结果的准确性。归纳式学习则是为完全未知的数据集预测标签。
此外,常见的半监督学习算法的步骤为:第一步会在有标签的数据上训练模型,然后用这个模型给无标签的数据打上伪标签,然后将伪标签和有标签的数据组合成新的训练集,在这个训练集上训练一个新的模型,最后用这个模型给预测数据集打上标签。
Part 04、 总结
半监督学习的最大的问题是在很多情况下,模型的性能依赖于有标签的数据集,并且对于有标签数据集的质量要求较高,甚至半监督学习模型预测准确度与基于有标签数据集的有监督模型的结果相差不大,反而半监督模型为了有效提取无标签数据中的有效信息,会消耗更多的资源。因此,半监督学习的发展方向是提高算法的鲁棒性以及数据提取的有效性。
目前在半监督学习领域中,PU-Learning(正负样本学习)是比较热门的算法。这类算法主要应用于只有正样本和无标签数据的数据集。它的优点是在某些场景下,我们能够相对容易地获取可靠的正样本数据集,并且数据量相对较大。举例来说,在垃圾邮件检测中,我们很容易获取到大量的正常邮件数据
以上是重新编写的标题:探究半监督学习的应用领域及其相关场景的详细内容。更多信息请关注PHP中文网其他相关文章!

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠审校 | 孙淑娟简介通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。 3月23日消息,外媒报道称,分析公司Similarweb的数据显示,在整合了OpenAI的技术后,微软旗下的必应在页面访问量方面实现了更多的增长。截至3月20日的数据显示,自微软2月7日推出其人工智能版本以来,必应搜索引擎的页面访问量增加了15.8%,而Alphabet旗下的谷歌搜索引擎则下降了近1%。这些数据是微软在与谷歌争夺生

荣耀的人工智能助手叫“YOYO”,也即悠悠;YOYO除了能够实现语音操控等基本功能之外,还拥有智慧视觉、智慧识屏、情景智能、智慧搜索等功能,可以在系统设置页面中的智慧助手里进行相关的设置。

阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。 阅读论文可以说是我们的日常工作之一,论文的数量太多,我们如何快速阅读归纳呢?自从ChatGPT出现以后,有很多阅读论文的服务可以使用。其实使用ChatGPT API非常简单,我们只用30行python代码就可以在本地搭建一个自己的应用。使用 Python 和 C

人工智能在教育领域的应用主要有个性化学习、虚拟导师、教育机器人和场景式教育。人工智能在教育领域的应用目前还处于早期探索阶段,但是潜力却是巨大的。

人工智能在生活中的应用有:1、虚拟个人助理,使用者可通过声控、文字输入的方式,来完成一些日常生活的小事;2、语音评测,利用云计算技术,将自动口语评测服务放在云端,并开放API接口供客户远程使用;3、无人汽车,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目标;4、天气预测,通过手机GPRS系统,定位到用户所处的位置,在利用算法,对覆盖全国的雷达图进行数据分析并预测。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

WebStorm Mac版
好用的JavaScript开发工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

Atom编辑器mac版下载
最流行的的开源编辑器