首页 >科技周边 >人工智能 >微软推出 XOT 技术,加强语言模型的推理能力

微软推出 XOT 技术,加强语言模型的推理能力

王林
王林转载
2023-11-17 17:45:201136浏览

微软推出 XOT 技术,加强语言模型的推理能力

11 月 15 日消息,微软近日推出了名为“Everything of Thought”(XOT)的方法,灵感来自谷歌 DeepMind 的 AlphaZero,利用紧凑的神经网络,来增强 AI 模型推理能力。

微软推出 XOT 技术,加强语言模型的推理能力

微软推出 XOT 技术,加强语言模型的推理能力

微软推出 XOT 技术,加强语言模型的推理能力

微软和佐治亚理工学院、华东师范大学合作开发了该算法,整合了强化学习(reinforcement learning)和蒙特卡洛树搜索 (MCTS) 能力,在复杂决策环境中,进一步提高解决问题的有效性。

本站注意:微软研究团队表示,XOT方法可以使语言模型在不熟悉的问题上得到扩展,在Game of 24、8-Puzzle和Pocket Cube的严格测试中有明显的提升。结果显示,XOT明显优于其他方法,甚至解决了其他方法失败的问题。然而,XOT并没有达到100%的可靠性

微软推出 XOT 技术,加强语言模型的推理能力

XOT 框架包括以下关键步骤:

  • 预训练阶段:MCTS 模块在特定任务上进行预训练,以学习有关有效思维搜索的领域知识。轻量级策略和价值网络指导搜索。思想搜索: 在推理过程中,预训练的 MCTS 模块使用策略 / 价值网络来有效地探索和生成 LLM 的思想轨迹。
  • 思想修正:LLM 审查 MCTS 的思想并识别任何错误。修正的想法是通过额外的 MCTS 模拟产生的。
  • LLM 推理: 将修改后的想法提供给 LLM 解决问题的最终提示。

本站在此附上论文 [PDF] 地址,感兴趣的用户可以深入阅读。

以上是微软推出 XOT 技术,加强语言模型的推理能力的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:51cto.com。如有侵权,请联系admin@php.cn删除