搜索
首页科技周边人工智能谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

谷歌DeepMind最近发现的一项新结果在Transformer领域引起了广泛争议:

它的泛化能力,无法扩展到训练数据以外的内容。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

目前这一结论还没有进一步得到验证,但已经惊动了一众大佬,比如Keras之父Francois Chollet表示,如果消息为真,将成为大模型界的一件大事。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

谷歌Transformer是今天大模型背后的基础架构,我们所熟悉的GPT里的“T”指的就是它。

一系列大模型表现出强大的上下文学习能力,可以快速学习示例并完成新的任务。

但现在,同样来自Google的研究人员似乎指出了它的致命缺陷——超出训练数据也就是人类已有知识之外,全都无能为力。

一时间,不少从业者认为AGI再次变得遥不可及。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

有些网友指出,论文中还有一些被忽视的关键细节,例如实验只涉及到了GPT-2的规模,训练数据也不够丰富

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

随着时间的推移,更多认真研究了这篇论文的网友则指出,研究结论本身没什么问题,但人们却基于此做出过度的解读。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

在论文引发网友热议后,其中一位作者也公开进行了两点澄清:

首先,实验中采用的是简单的Transformer,既不是“大”模型,也不是语言模型;

其次,模型是可以学习新任务的,只是无法泛化到新类型的任务

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

此后,又有网友在Colab中重复了这一实验,却得到了完全不同的结果。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

那么,我们就先来看看这篇论文,还有提出不同结果的Samuel,到底都说了什么。

新函数几乎无法预测

在这个实验中,作者使用基于Jax的机器学习框架训练了一个规模接近GPT-2的Transformer模型,该模型仅包含解码器部分

这个模型包含12层,8个注意力头,嵌入空间维度为256,参数量约为950万

为了测试它的泛化能力,作者选择了函数作为测试对象。他们将线性函数和正弦函数作为训练数据输入模型中

这两种函数对于此时的模型来说是已知,预测的结果自然也很好,但当研究者把线性函数和正弦函数进行了凸性组合时,问题就出现了。

凸性组合并没有那么神秘,作者构建出了形如f(x)=a·kx+(1-a)sin(x)的函数,在我们看来不过是两个函数按比例简单相加。

我们之所以会这样认为是因为我们的大脑具备这种泛化能力,而大规模模型则不同

对于只学过线性和正弦函数的模型来说,简单的相加看起来很新颖

针对这种新函数,Transformer的预测几乎没有任何准确性(见图4c),因此作者认为该模型在函数上缺乏泛化能力

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

为了进一步验证自己的结论,作者调整了线性或正弦函数的权重,但即使这样Transformer的预测表现也没有显着的变化。

只有一点例外——当其中一项的权重接近1时,模型的预测结果和实际就比较吻合了。

如果权重为1,则表示陌生的新函数直接变成了训练时已经见过的函数,这种数据对于模型的泛化能力显然没有什么帮助

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

进一步实验还显示,Transformer不仅对于函数的种类十分敏感,甚至同种函数也可能变成陌生条件。

研究人员发现,在改变正弦函数的频率时,即使是简单的函数模型,预测结果也会出现线束变化

只有当频率接近训练数据中的函数时,模型才能给出比较准确的预测,当频率过高或过低时,预测结果出现了严重的偏差……

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

据此,作者认为,条件只要稍微有点不一样,大模型就不知道怎么做了,这不就是说明泛化能力差吗?

作者在文中也自述了研究中存在的一些局限性,如何将函数数据上的观察应用到token化的自然语言问题上。

团队也在语言模型上尝试了相似的试验但遇到一些障碍,如何适当定义任务族(相当于这里的函数种类)、凸组合等还有待解决。

然而,萨缪尔的模型规模较小,只有4层,在Colab上训练5分钟后就可以适用于线性与正弦函数的组合

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

不能泛化又如何

根据整篇文章的综合内容来看,Quora CEO在这篇文章中的结论非常狭隘,只有在许多假设成立的情况下才能成立

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

斯隆奖得主、UCLA教授顾全全说,这篇论文本身的结论不存在争议,但不应该被过度解读。

根据之前的研究,Transformer模型只有在面对与预训练数据明显不同的内容时才无法泛化。事实上,大型模型的泛化能力通常是通过任务的多样性和复杂性来评估的

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

如果仔细追究Transformer的泛化能力,恐怕要让子弹再飞一会儿了。

但是,就算真的缺乏泛化能力,又能怎么样呢?

英伟达AI科学家Jim Fan就说,这种现象其实没啥奇怪的,因为Transformer本来就不是万金油,大模型表现得好,是因为训练数据刚好是我们关心的内容

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

Jim进一步补充道,这就好像是在说,用一千亿张猫狗的照片训练视觉模型,接着让模型去识别飞机,然后发现,哇,居然真的不认识诶。

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

人类在面对一些未知任务时,不仅仅是大规模模型,也未必能够找到解决方案。这是否也暗示了人类缺乏泛化能力呢?

谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟

因此,在以目标为导向的过程中,不论是大型模型还是人类,最终的目的都是解决问题,而泛化只是一种手段

将这个表达方式换成中文,既然泛化能力不足,那就将其训练到没有训练样本之外的数据为止

那么,对于这项研究,你有什么看法呢?

论文地址:https://arxiv.org/abs/2311.00871

以上是谷歌大模型研究引发激烈争议:训练数据之外的泛化能力受到质疑,网友表示AGI奇点或被推迟的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
从VAE到扩散模型:一文解读以文生图新范式从VAE到扩散模型:一文解读以文生图新范式Apr 08, 2023 pm 08:41 PM

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了找不到中文语音预训练模型?中文版 Wav2vec 2.0和HuBERT来了Apr 08, 2023 pm 06:21 PM

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

普林斯顿陈丹琦:如何让「大模型」变小普林斯顿陈丹琦:如何让「大模型」变小Apr 08, 2023 pm 04:01 PM

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉Transformer解锁CNN和Transformer正确结合方法,字节跳动提出有效的下一代视觉TransformerApr 09, 2023 pm 02:01 PM

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Stable Diffusion XL 现已推出—有什么新功能,你知道吗?Apr 07, 2023 pm 11:21 PM

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

​什么是Transformer机器学习模型?​什么是Transformer机器学习模型?Apr 08, 2023 pm 06:31 PM

译者 | 李睿审校 | 孙淑娟​近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药五年后AI所需算力超100万倍!十二家机构联合发表88页长文:「智能计算」是解药Apr 09, 2023 pm 07:01 PM

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:​https://spj.scien

AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军AI模型告诉你,为啥巴西最可能在今年夺冠!曾精准预测前两届冠军Apr 09, 2023 pm 01:51 PM

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。