深度学习模型训练所需的GPU功能强大,但价格昂贵。为了充分利用GPU,开发人员需要一个高效的数据传输通道,以便在GPU准备好计算下一个训练步骤时,能够迅速将数据传输到GPU。使用Ray能够显着提高数据传输通道的效率
1、训练数据管道的结构
首先,我们来看一下模型训练的伪代码
for step in range(num_steps):sample, target = next(dataset) # 步骤1train_step(sample, target) # 步骤2
在步骤1中,获取下一个小批量的样本和标签。在步骤2中,它们被传递给train_step函数,该函数会将它们复制到GPU上,执行前向传递和反向传递以计算损失和梯度,并更新优化器的权重。
请详细了解步骤1。当数据集太大无法放入内存时,步骤1将从磁盘或网络中获取下一个小批量数据。此外,步骤1还包括一定量的预处理。输入数据必须被转换为数字张量或张量集合,然后再馈送给模型。在某些情况下,还会在传递给模型之前对张量进行其他转换,如归一化、绕轴旋转、随机打乱等
如果工作流程是严格按顺序执行的,即先执行步骤1 ,然后再执行步骤2,那么模型将始终需要等待下一批数据的输入、输出和预处理操作。 GPU将无法得到有效利用,它将在加载下一个小批量数据时处于空闲状态。
为了解决这个问题,可以将数据管道视为生产者——消费者的问题。数据管道生成小批量数据并写入有界缓冲区。模型/GPU从缓冲区中消费小批量数据,执行前向/反向计算并更新模型权重。如果数据管道能够以模型/GPU消费的速度快速生成小批量数据,那么训练过程将会非常高效。
图片
2、Tensorflow tf.data API
Tensorflow tf.data API提供了一组丰富的功能,可用于高效创建数据管道,使用后台线程获取小批量数据,使模型无需等待。仅仅预先获取数据还不够,如果生成小批量数据的速度比GPU消费数据的速度慢,那么就需要使用并行化来加快数据的读取和转换。为此,Tensorflow提供了交错功能以利用多个线程并行读取数据,以及并行映射功能使用多个线程对小批量数据进行转换。
由于这些API是基于多线程的,所以可能会受到Python全局解释器锁(GIL)的限制。 Python的GIL限制了一次只能运行单个线程的字节码。如果在管道中使用纯TensorFlow代码,通常不会受到这种限制,因为TensorFlow核心执行引擎在GIL的范围之外工作。但是,如果使用的第三方库没有解除GIL限制或者使用Python进行大量计算,那么依赖多线程来并行化管道就不可行
3、使用多进程并行化数据管道
考虑以下生成器函数,该函数模拟加载和执行一些计算以生成小批量数据样本和标签。
def data_generator():for _ in range(10):# 模拟获取# 从磁盘/网络time.sleep(0.5)# 模拟计算for _ in range(10000):passyield (np.random.random((4, 1000000, 3)).astype(np.float32), np.random.random((4, 1)).astype(np.float32))
接下来,在虚拟的训练管道中使用该生成器,并测量生成小批量数据所花费的平均时间。
generator_dataset = tf.data.Dataset.from_generator(data_generator,output_types=(tf.float64, tf.float64),output_shapes=((4, 1000000, 3), (4, 1))).prefetch(tf.data.experimental.AUTOTUNE)st = time.perf_counter()times = []for _ in generator_dataset:en = time.perf_counter()times.append(en - st)# 模拟训练步骤time.sleep(0.1)st = time.perf_counter()print(np.mean(times))
据观察,平均耗时约为0.57秒(在配备Intel Core i7处理器的Mac笔记本电脑上测量)。如果这是一个真实的训练循环,GPU的利用率将相当低,它只需花费0.1秒进行计算,然后闲置0.57秒等待下一个批次数据。
为了加快数据加载速度,可以使用多进程生成器。
from multiprocessing import Queue, cpu_count, Processdef mp_data_generator():def producer(q):for _ in range(10):# 模拟获取# 从磁盘/网络time.sleep(0.5)# 模拟计算for _ in range(10000000):passq.put((np.random.random((4, 1000000, 3)).astype(np.float32),np.random.random((4, 1)).astype(np.float32)))q.put("DONE")queue = Queue(cpu_count()*2)num_parallel_processes = cpu_count()producers = []for _ in range(num_parallel_processes):p = Process(target=producer, args=(queue,))p.start()producers.append(p)done_counts = 0while done_counts <p>现在,如果测量等待下一个小批次数据所花费的时间,得到的平均时间为0.08秒。速度提高了近7倍,但理想情况下,希望这个时间接近0。 </p><p>如果进行分析,可以发现相当多的时间都花在了准备数据的反序列化上。在多进程生成器中,生产者进程会返回大型NumPy数组,这些数组需要进行准备,然后在主进程中进行反序列化。那么在进程间传递大型数组时,如何提高效率呢? </p><h2 id="使用Ray并行化数据管道">4、使用Ray并行化数据管道</h2><p>这就是Ray发挥作用的地方。 Ray是一个用于在Python中运行分布式计算的框架。它带有一个共享内存对象存储区,可在不同进程间高效地传输对象。特别的是,在不进行任何序列化和反序列化的情况下,对象存储区中的Numpy数组可在同一节点上的worker之间共享。 Ray还可以轻松实现数据加载在多台机器上的扩展,并使用Apache Arrow高效地序列化和反序列化大型数组。 </p><p>Ray带有一个实用函数from_iterators,可以创建并行迭代器,开发者可以用它包装data_generator生成器函数。 </p><pre class="brush:php;toolbar:false">import raydef ray_generator():num_parallel_processes = cpu_count()return ray.util.iter.from_iterators([data_generator]*num_parallel_processes).gather_async()
使用ray_generator,测量等待下一个小批量数据所花费的时间为0.02秒,比使用多进程处理的速度提高了4倍。
以上是使用Ray创建高效的深度学习数据管道的详细内容。更多信息请关注PHP中文网其他相关文章!

由于AI的快速整合而加剧了工作场所的迅速危机危机,要求战略转变以外的增量调整。 WTI的调查结果强调了这一点:68%的员工在工作量上挣扎,导致BUR

约翰·塞尔(John Searle)的中国房间论点:对AI理解的挑战 Searle的思想实验直接质疑人工智能是否可以真正理解语言或具有真正意识。 想象一个人,对下巴一无所知

与西方同行相比,中国的科技巨头在AI开发方面的课程不同。 他们不专注于技术基准和API集成,而是优先考虑“屏幕感知” AI助手 - AI T

MCP:赋能AI系统访问外部工具 模型上下文协议(MCP)让AI应用能够通过标准化接口与外部工具和数据源交互。由Anthropic开发并得到主要AI提供商的支持,MCP允许语言模型和智能体发现可用工具并使用合适的参数调用它们。然而,实施MCP服务器存在一些挑战,包括环境冲突、安全漏洞以及跨平台行为不一致。 Forbes文章《Anthropic的模型上下文协议是AI智能体发展的一大步》作者:Janakiram MSVDocker通过容器化解决了这些问题。基于Docker Hub基础设施构建的Doc

有远见的企业家采用的六种策略,他们利用尖端技术和精明的商业敏锐度来创造高利润的可扩展公司,同时保持控制权。本指南是针对有抱负的企业家的,旨在建立一个

Google Photos的新型Ultra HDR工具:改变图像增强的游戏规则 Google Photos推出了一个功能强大的Ultra HDR转换工具,将标准照片转换为充满活力的高动态范围图像。这种增强功能受益于摄影师

技术架构解决了新兴的身份验证挑战 代理身份集线器解决了许多组织仅在开始AI代理实施后发现的问题,即传统身份验证方法不是为机器设计的

(注意:Google是我公司的咨询客户,Moor Insights&Strateging。) AI:从实验到企业基金会 Google Cloud Next 2025展示了AI从实验功能到企业技术的核心组成部分的演变,


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版
中文版,非常好用

禅工作室 13.0.1
功能强大的PHP集成开发环境

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境