随着GPT-3等大型语言模型的问世,自然语言处理(NLP)领域取得了重大突破。这些语言模型具备生成类人文本的能力,并已广泛应用于各种场景,如聊天机器人和翻译
然而,当涉及到专业化和定制化的应用场景时,通用的大语言模型可能在专业知识方面会有所不足。用专业的语料库对这些模型进行微调往往昂贵且耗时。“检索增强生成”(RAG)为专业化应用提供了一个新技术方案。
下面我们主要介绍RAG如何工作,并通过一个实际的例子,将产品手册作为专业语料库,使用GPT-3.5 Turbo来作为问答模型,验证其有效性。
案例:开发一个聊天机器人,能够回答与特定产品相关的问题。该企业拥有独特的用户手册
RAG介绍
RAG 提供了一种有效的解决方案,用于特定领域的问答。它主要通过将行业知识转化为向量进行存储和检索,并将检索结果与用户问题结合形成提示信息,最终利用大型模型生成合适的回答。通过结合检索机制和语言模型,大大增强了模型的响应能力
创建聊天机器人程序的步骤如下:
- 读取PDF(用户手册PDF文件)并使用chunk_size为1000个令牌进行令牌化。
- 创建向量(可以使用OpenAI EmbeddingsAPI来创建向量)。
- 在本地向量库中存储向量。我们将使用ChromaDB作为向量数据库(向量数据库也可以使用Pinecone或其他产品替代)。
- 用户发出具有查询/问题的提示。
- 根据用户的问题从向量数据库检索出知识上下文数据。这个知识上下文数据将在后续步骤中与提示词结合使用,来增强提示词,通常被称为上下文丰富。
- 提示词包含用户问题和增强的上下文知识一起被传递给LLM
- LLM 基于此上下文进行回答。
动手开发
(1)设置Python虚拟环境 设置一个虚拟环境来沙箱化我们的Python,以避免任何版本或依赖项冲突。执行以下命令以创建新的Python虚拟环境。
需要重写的内容是:pip安装virtualenv,python3 -m venv ./venv,source venv/bin/activate
需要进行改写的内容是:(2)生成OpenAI密钥
使用GPT需要一个OpenAI密钥来进行访问
需要进行重写的内容是:(3)安装依赖库
安装程序需要的各种依赖项。包括以下几个库:
- lanchain:一个开发LLM应用程序的框架。
- chromaDB:这是用于持久化向量嵌入的VectorDB。
- unstructured:用于预处理Word/PDF文档。
- tiktoken: Tokenizer framework
- pypdf:读取和处理PDF文档的框架。
- openai:访问OpenAI的框架。
pip install langchainpip install unstructuredpip install pypdfpip install tiktokenpip install chromadbpip install openai
创建一个环境变量来存储OpenAI密钥。
export OPENAI_API_KEY=<openai-key></openai-key>
(4)将用户手册PDF文件转化为向量并将其存储在ChromaDB中
将所有需要使用的依赖库和函数导入
import osimport openaiimport tiktokenimport chromadbfrom langchain.document_loaders import OnlinePDFLoader, UnstructuredPDFLoader, PyPDFLoaderfrom langchain.text_splitter import TokenTextSplitterfrom langchain.memory import ConversationBufferMemoryfrom langchain.embeddings.openai import OpenAIEmbeddingsfrom langchain.vectorstores import Chromafrom langchain.llms import OpenAIfrom langchain.chains import ConversationalRetrievalChain
读取PDF,标记化文档并拆分文档。
loader = PyPDFLoader("Clarett.pdf")pdfData = loader.load()text_splitter = TokenTextSplitter(chunk_size=1000, chunk_overlap=0)splitData = text_splitter.split_documents(pdfData)
创建一个chroma集合,和一个存储chroma数据的本地目录。然后,创建一个向量(embeddings)并将其存储在ChromaDB中。
collection_name = "clarett_collection"local_directory = "clarett_vect_embedding"persist_directory = os.path.join(os.getcwd(), local_directory)openai_key=os.environ.get('OPENAI_API_KEY')embeddings = OpenAIEmbeddings(openai_api_key=openai_key)vectDB = Chroma.from_documents(splitData,embeddings,collection_name=collection_name,persist_directory=persist_directory)vectDB.persist()
执行此代码后,您应该看到一个已经创建好的文件夹,用于存储向量。
在将向量嵌入存储在ChromaDB后,可以使用LangChain中的ConversationalRetrievalChain API来启动一个聊天历史组件
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)chatQA = ConversationalRetrievalChain.from_llm(OpenAI(openai_api_key=openai_key, temperature=0, model_name="gpt-3.5-turbo"), vectDB.as_retriever(), memory=memory)
初始化了langchan之后,我们可以使用它来聊天/Q A。下面的代码中,接受用户输入的问题,并在用户输入'done'之后,将问题传递给LLM,以获得答复并打印出来。
chat_history = []qry = ""while qry != 'done':qry = input('Question: ')if qry != exit:response = chatQA({"question": qry, "chat_history": chat_history})print(response["answer"])
总之
RAG将GPT等语言模型的优势与信息检索的优势结合在一起。通过利用特定的知识上下文信息来增强提示词的丰富度,使得语言模型能够生成更准确、与知识上下文相关的回答。RAG提供了一种比“微调”更高效且成本效益更好的解决方案,为行业应用或企业应用提供可定制化的互动方案
以上是提升工程效率——增强检索生成(RAG)的详细内容。更多信息请关注PHP中文网其他相关文章!

斯坦福大学以人为本人工智能研究所发布的《2025年人工智能指数报告》对正在进行的人工智能革命进行了很好的概述。让我们用四个简单的概念来解读它:认知(了解正在发生的事情)、欣赏(看到好处)、接纳(面对挑战)和责任(弄清我们的责任)。 认知:人工智能无处不在,并且发展迅速 我们需要敏锐地意识到人工智能发展和传播的速度有多快。人工智能系统正在不断改进,在数学和复杂思维测试中取得了优异的成绩,而就在一年前,它们还在这些测试中惨败。想象一下,人工智能解决复杂的编码问题或研究生水平的科学问题——自2023年

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

本周的AI景观:进步,道德考虑和监管辩论的旋风。 OpenAI,Google,Meta和Microsoft等主要参与者已经释放了一系列更新,从开创性的新车型到LE的关键转变

连接的舒适幻想:我们在与AI的关系中真的在蓬勃发展吗? 这个问题挑战了麻省理工学院媒体实验室“用AI(AHA)”研讨会的乐观语气。事件展示了加油

介绍 想象一下,您是科学家或工程师解决复杂问题 - 微分方程,优化挑战或傅立叶分析。 Python的易用性和图形功能很有吸引力,但是这些任务需要强大的工具

Meta's Llama 3.2:多式联运AI强力 Meta的最新多模式模型Llama 3.2代表了AI的重大进步,具有增强的语言理解力,提高的准确性和出色的文本生成能力。 它的能力t

数据质量保证:与Dagster自动检查和良好期望 保持高数据质量对于数据驱动的业务至关重要。 随着数据量和源的增加,手动质量控制变得效率低下,容易出现错误。

大型机:AI革命的无名英雄 虽然服务器在通用应用程序上表现出色并处理多个客户端,但大型机是专为关键任务任务而建立的。 这些功能强大的系统经常在Heavil中找到


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

记事本++7.3.1
好用且免费的代码编辑器

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境