随着大模型掀起新一轮 AI 热潮,人们开始思考:大模型的强大能力来源于什么?
当前,大模型一直在由不断增加的「大数据」来推动。「大模型 + 大数据」似乎已经成为构建模型的标准范式。但随着模型规模和数据量的不断增长,算力的需求会迅速膨胀。一些研究者尝试探索新思路。 重写后的内容: 目前,大型模型一直在依靠不断增加的「大数据」来推动。 「大型模型 + 大数据」似乎已成为构建模型的标准范式。 但随着模型规模和数据量的不断增长,算力需求会迅速膨胀。 一些研究者正在尝试探索新的思路
微软在6月份发布了一篇名为《只需教科书》的论文,使用了一个只有7B个标记的数据集来训练了一个包含1.3B个参数的模型,称为phi-1。尽管数据集和模型大小相对于竞争对手来说小了几个数量级,但phi-1在HumanEval测试中的一次通过率达到了50.6%,在MBPP测试中达到了55.5%
phi-1 证明高质量的「小数据」能够让模型具备良好的性能。最近,微软又发表了论文《Textbooks Are All You Need II: phi-1.5 technical report》,对高质量「小数据」的潜力做了进一步研究。
论文地址:https://arxiv.org/abs/2309.05463
模型简介
架构
研究团队使用了phi-1的研究方法,并将研究的重点放在自然语言常识推理任务上,开发了一个拥有1.3B参数的Transformer架构语言模型phi-1.5。phi-1.5的架构与phi-1完全相同,有24层,32个头,每个头的维度为64,并且使用旋转维度为32的旋转嵌入,上下文长度为2048
此外,该研究还使用 flash-attention 进行训练加速,并使用 codegen-mono 的 tokenizer。
需要进行重写的内容是:训练数据
phi-1.5 的需要进行重写的内容是:训练数据是由 phi-1 的需要进行重写的内容是:训练数据(7B token)和新创建的「教科书质量」数据(大约 20B token)组成的。其中,新创建的「教科书质量」数据旨在让模型掌握常识推理,研究团队精心挑选了 20K 个主题来生成新数据。
值得注意的是,为了探讨网络数据(LLM 常用)的重要性,该研究还构建了 phi-1.5-web-only 和 phi-1.5-web 两个模型。
研究团队表示:创建强大且全面的数据集需要的不仅是原始计算能力,还需要复杂的迭代、有效的主题选择,以及对知识的深入了解,具备这些要素,才能确保数据的质量和多样性。
实验结果
该研究对于语言理解任务进行了评估,使用了多个数据集,包括PIQA、Hellaswag、OpenbookQA、SQUAD和MMLU。评估结果如表3所示,phi-1.5的性能可以与体积大5倍的模型相媲美
在常识推理基准上的测试结果如下表所示:
在更复杂的推理任务中,如小学数学和基础编码任务,phi-1.5的表现超过了大多数LLM
研究团队认为,phi-1.5 再次证明了高质量「小数据」的力量。
质疑与讨论
或许是因为「大模型 + 大数据」的理念太深入人心,这项研究遭到了机器学习社区一些研究人员的质疑,甚至有人怀疑 phi-1.5 直接在测试基准数据集上训练了。
网友Susan Zhang进行了一系列验证,并指出:“phi-1.5能够对GSM8K数据集中的原问题给出完全正确的回答,但只要稍微修改一下格式(例如换行),phi-1.5就不会回答了。”
还有修改问题中的数据,phi-1.5 在解答问题的过程中就会出现「幻觉」。例如,在一个点餐问题中,只修改了「披萨的价格」,phi-1.5 的解答就出现了错误。
并且,phi-1.5 似乎「记住了」最终答案,即使在修改数据的情况下该答案已经是错误的。
对此,一位论文作者Ronan Eldan迅速作出了回应,对上述网友测试中出现的问题进行了解释和反驳:
但该网友再次阐明其观点:测试说明 phi-1.5 的回答对 prompt 的格式是非常「脆弱」的,并对作者的回应提出质疑:
论文的第一作者李元智回应道:“虽然phi-1.5在稳健性方面确实不如GPT-4,但『脆弱』并不是准确的术语。事实上,对于任何模型来说,pass@k准确率都会比pass@1要高得多(所以模型的正确性是偶然的)
在看到这些质疑和讨论后,网友们纷纷表示:“最简单的回应方式就是公开合成数据集。”
你对此有什么看法?
以上是微软超强小模型引发热议:探讨教科书级数据的巨大作用的详细内容。更多信息请关注PHP中文网其他相关文章!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Atom编辑器mac版下载
最流行的的开源编辑器