搜索
首页科技周边人工智能听我说,Transformer它就是个支持向量机

Transformer 是一个支持向量机(SVM)一种新型理论在学界引发了人们的讨论。

上周末,一篇来自宾夕法尼亚大学、加州大学河滨分校的论文试图研究大模型基础 Transformer 结构的原理,其在注意力层的优化几何与将最优输入 token 与非最优 token 分开的硬边界 SVM 问题之间建立了形式等价。

在 hackernews 上作者表示,这种理论解决了 SVM 将每个输入序列中的「好」标记与「坏」token 分开的问题。该 SVM 作为一个性能优异的 token 选择器,与传统为输入分配 0-1 标签的 SVM 本质上不同。

这种理论也解释了注意力如何通过 softmax 引起稀疏性:落在 SVM 决策边界错误一侧的「坏」token 被 softmax 函数抑制,而「好」token 是那些最终具有非零 softmax 概率的 token。还值得一提的是,这个 SVM 源于 softmax 的指数性质。

论文上传到 arXiv 上面之后,人们纷纷发表意见,有人表示:AI 研究的方向真是螺旋上升,难道又要绕回去了?

听我说,Transformer它就是个支持向量机

绕了一圈,支持向量机还是没有过时。

自经典论文《Attention is All You Need》问世以来,Transformer 架构已为自然语言处理(NLP)领域带来了革命性进展。Transformer 中的注意力层接受一系列输入 token X,并通过计算 听我说,Transformer它就是个支持向量机 评估 token 之间的相关性,其中 (K, Q) 是可训练的 key-query 参数,最终有效捕获远程依赖关系。

现在,一篇名为《Transformers as Support Vector Machines》的新论文在自注意力的优化几何和 hard-margin SVM 问题之间建立了一种形式等价,使用 token 对的外积线性约束将最优输入 token 与非最优 token 分开。

听我说,Transformer它就是个支持向量机

论文链接:https://arxiv.org/pdf/2308.16898.pdf

这种形式等价建立在 Davoud Ataee Tarzanagh 等人的论文《Max-Margin Token Selection in Attention Mechanism》的基础上,它能够描述通过梯度下降进行优化的 1 层 transformer 的隐式偏差(implicit bias):

 (1) 优化由 (K, Q) 参数化的注意力层,通过消失正则化(vanishing regularization),收敛到一种 SVM 解决方案,其中最小化组合参数 听我说,Transformer它就是个支持向量机 的核范数(nuclear norm)。相反,直接通过 W 进行参数化可以最小化 Frobenius 范数 SVM 目标。该论文描述了这种收敛,并强调它可以发生在局部最优方向而不是全局最优方向。 

(2) 该论文还证明了 W 参数化在适当的几何条件下梯度下降的局部 / 全局方向收敛。重要的是,过度参数化通过确保 SVM 问题的可行性和保证没有驻点(stationary points)的良性优化环境来催化全局收敛。 

(3) 虽然该研究的理论主要适用于线性预测头,但研究团队提出了一种更通用的 SVM 等价物,可以预测具有非线性头 / MLP 的 1 层 transformer 的隐式偏差。

总的来说,该研究的结果适用于一般数据集,可以扩展到交叉注意力层,并且研究结论的实际有效性已经通过彻底的数值实验得到了验证。该研究建立一种新的研究视角,将多层 transformer 看作分离和选择最佳 token 的 SVM 层次结构。

具体来说,给定长度为 T,嵌入维度为 d 的输入序列 听我说,Transformer它就是个支持向量机 ,该研究分析核心交叉注意力和自注意力模型: 

听我说,Transformer它就是个支持向量机

其中,K、Q、V 分别是可训练的键、查询、值矩阵,听我说,Transformer它就是个支持向量机;S (・) 表示 softmax 非线性,它逐行应用于 听我说,Transformer它就是个支持向量机。该研究假设将 Z 的第一个 token(用 z 表示)用于预测。具体来说,给定一个训练数据集 听我说,Transformer它就是个支持向量机听我说,Transformer它就是个支持向量机听我说,Transformer它就是个支持向量机,该研究使用递减损失函数 听我说,Transformer它就是个支持向量机 进行最小化:

听我说,Transformer它就是个支持向量机

这里,h (・) : 听我说,Transformer它就是个支持向量机 是包含值权重 V 的预测头。在这种表述中,模型 f (・) 精确地表示了一个单层 transformer,其中注意力层之后是一个 MLP。作者通过设置 听我说,Transformer它就是个支持向量机 来恢复 (2) 中的自注意力,其中 x_i 表示序列 X_i 的第一个 token。由于 softmax 运算的非线性性质,它给优化带来了巨大挑战。即使预测头是固定和线性的,该问题也是非凸和非线性的。在本研究中,作者将重点放在优化注意力权重(K、Q 或 W)上,并克服这些挑战,从而建立 SVM 的基本等价性。

论文结构如下:第 2 章介绍了自注意力和优化的初步知识;第 3 章分析了自注意力的优化几何,表明注意力参数 RP 收敛到最大边际解;第 4 章和第 5 章分别介绍了全局和局部梯度下降分析,表明 key-query 变量 W 向 (Att-SVM) 的解决方案收敛;第 6 章提供了在非线性预测头和广义 SVM 等价性方面的结果;第 7 章将理论扩展到顺序预测和因果预测;第 8 章讨论了相关文献。最后,第 9 章进行总结,提出开放性问题和未来研究方向。

论文的主要内容如下:

注意力层的内隐偏差(第 2-3 章)

正则化消失的情况下优化注意力参数(K, Q),会在方向上收敛到听我说,Transformer它就是个支持向量机的最大边际解,其核范数目标是组合参数 听我说,Transformer它就是个支持向量机。在直接用组合参数 W 对交叉注意力进行参数化的情况下,正则化路径 (RP) 定向收敛于以 Frobenius 范数为目标的(Att-SVM)解。

这是第一个正式区分 W 与(K,Q)参数化优化动态的结果,揭示了后者的低阶偏差。该研究的理论清楚地描述了所选 token 的最优性,并自然地扩展到了序列到序列或因果分类设置。

梯度下降的收敛(第 4-5 章)

通过适当的初始化和线性头 h (・),组合 key-query 变量 W 的梯度下降(GD)迭代在方向上收敛到(Att-SVM)的局部最优解(第 5 节)。要实现局部最优,所选 token 必须比相邻 token 得分更高。

局部最优方向不一定是唯一的,可以根据问题的几何特征来确定 [TLZO23]。作为一项重要贡献,作者确定了保证向全局最优方向收敛的几何条件(第 4 章)。这些条件包括: 

  • 最佳 token 在分数上有明显区别;
  • 初始梯度方向与最佳 token 一致。

除此以外,论文还展示了过度参数化(即维度 d 较大,以及同等条件)通过确保(1)(Att-SVM)的可行性,以及(2)良性优化 landscape(即不存在静止点和虚假的局部最优方向)来催化全局收敛(见第 5.2 节)。

图 1 和图 2 对此进行了说明。

听我说,Transformer它就是个支持向量机


听我说,Transformer它就是个支持向量机

SVM 等价的通用性(第 6 章)

当使用线性 h (・) 进行优化时,注意力层会固有地偏向于从每个序列中选择一个 token(又称硬注意力)。这反映在了 (Att-SVM) 中,表现为输出 token 是输入 token 的凸组合。与此相反,作者表明非线性头必须由多个 token 组成,从而突出了它们在 transformer 动态过程中的重要性(第 6.1 节)。利用从理论中获得的洞察力,作者提出了一种更通用的 SVM 等价方法。

值得注意的是,他们证明了在理论未涵盖的普遍情况下(例如,h (・) 是一个 MLP),本文的方法能准确预测通过梯度下降训练的注意力的隐含偏差。具体来说,本文的通用公式将注意力权重解耦为两个部分:一个是由 SVM 控制的定向部分,它通过应用 0-1 掩码来选择标记;另一个是有限部分,它通过调整 softmax 概率来决定所选 token 的精确组成。

这些发现的一个重要特点是,它们适用于任意数据集(只要 SVM 可行),并且可以用数字验证。作者通过实验广泛验证了 transformer 的最大边际等价性和隐含偏差。作者认为,这些发现有助于理解作为分层最大边际 token 选择机制的 transformer,可为即将开展的有关其优化和泛化动态的研究奠定基础。

以上是听我说,Transformer它就是个支持向量机的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
及时工程中的思想图是什么及时工程中的思想图是什么Apr 13, 2025 am 11:53 AM

介绍 在迅速的工程中,“思想图”是指使用图理论来构建和指导AI的推理过程的新方法。与通常涉及线性S的传统方法不同

优化您的组织与Genai代理商的电子邮件营销优化您的组织与Genai代理商的电子邮件营销Apr 13, 2025 am 11:44 AM

介绍 恭喜!您经营一家成功的业务。通过您的网页,社交媒体活动,网络研讨会,会议,免费资源和其他来源,您每天收集5000个电子邮件ID。下一个明显的步骤是

Apache Pinot实时应用程序性能监视Apache Pinot实时应用程序性能监视Apr 13, 2025 am 11:40 AM

介绍 在当今快节奏的软件开发环境中,确保最佳应用程序性能至关重要。监视实时指标,例如响应时间,错误率和资源利用率可以帮助MAIN

Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Chatgpt击中了10亿用户? Openai首席执行官说:'短短几周内翻了一番Apr 13, 2025 am 11:23 AM

“您有几个用户?”他扮演。 阿尔特曼回答说:“我认为我们上次说的是每周5亿个活跃者,而且它正在迅速增长。” “你告诉我,就像在短短几周内翻了一番,”安德森继续说道。 “我说那个私人

pixtral -12b:Mistral AI'第一个多模型模型 - 分析Vidhyapixtral -12b:Mistral AI'第一个多模型模型 - 分析VidhyaApr 13, 2025 am 11:20 AM

介绍 Mistral发布了其第一个多模式模型,即Pixtral-12b-2409。该模型建立在Mistral的120亿参数Nemo 12B之上。是什么设置了该模型?现在可以拍摄图像和Tex

生成AI应用的代理框架 - 分析Vidhya生成AI应用的代理框架 - 分析VidhyaApr 13, 2025 am 11:13 AM

想象一下,拥有一个由AI驱动的助手,不仅可以响应您的查询,还可以自主收集信息,执行任务甚至处理多种类型的数据(TEXT,图像和代码)。听起来有未来派?在这个a

生成AI在金融部门的应用生成AI在金融部门的应用Apr 13, 2025 am 11:12 AM

介绍 金融业是任何国家发展的基石,因为它通过促进有效的交易和信贷可用性来推动经济增长。交易的便利和信贷

在线学习和被动攻击算法指南在线学习和被动攻击算法指南Apr 13, 2025 am 11:09 AM

介绍 数据是从社交媒体,金融交易和电子商务平台等来源的前所未有的速度生成的。处理这种连续的信息流是一个挑战,但它提供了

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
4 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。