搜索
首页科技周边人工智能你的朋友也在看!谷歌STUDY算法加持书单推荐系统,让学生爱上阅读

开卷有益,是我们一直以来的认识。阅读可以帮助人们提高自己的语言能力、学习到新的技能....

阅读还能够改善情绪,提高心理健康水平。经常阅读的人有更丰富的常识以及对其他文化更深入的理解。

并且,有研究证实愉悦阅读与学业成功相关。

但在信息爆炸的时代,线上与线下的阅读资源都十分丰富。读什么,就成为了一项艰巨的挑战。

尤其是阅读的内容既要匹配不同的年龄阶段,又要引人入胜。

而推荐系统则是这个挑战的解决方案。它能够向读者呈现相关的阅读材料,并帮助他们保持阅读的兴趣。

推荐系统的核心是机器学习(Machine learning, ML),它被广泛应用于构建各种类型的推荐系统中:从视频到图书,再到电商平台等。

经过训练的ML 模型可以根据用户偏好、用户参与度和推荐的项目单独向每个用户进行推荐,从而改善用户体验。

谷歌最新的研究提出了一种考虑到阅读的社会性质(如教育环境)的有声读物内容推荐系统:STUDY算法。

由于一个人的同龄人目前正在阅读的内容会对他们感兴趣的阅读内容有重大影响,因此,谷歌与Learning Ally进行了合作。

Learning Ally是一家教育非营利组织,拥有一个针对学生的大型精选有声读物数字图书馆,非常适合构建社交推荐模型。

这能使模型能够从有关学生本地化社交群体的(如教室)实时信息中获益。

STUDY算法

STUDY算法采用了将推荐内容问题建模为点击率预测问题的方法。

其中模拟用户与每个特定项目的交互概率取决于:

1)用户和项目特征

2)该用户的项目交互历史序列。

之前的工作表明Transformer模型非常适合建模这个问题。

当单独处理每个用户时,模拟交互就成为了一个自回归序列建模问题。

STUDY算法是通过这一概念框架对数据建模,然后对这个框架进行扩展的最终成品。

点击率预测问题可以对个别用户过去和未来的项目偏好之间的依赖关系进行建模,并且可以在训练时学习用户之间的相似性模式。

但有一个问题是,点击率预测的方法无法对不同用户之间的依赖关系进行建模。

为此,谷歌开发了STUDY模型,可以解决自回归序列建模中无法对阅读的社会性质进行建模的缺陷。

STUDY可以将多个学生在一个课堂上阅读的书籍序列连接成一个序列,从而在一个模型中收集多个学生的数据。

但是,在用Transformer对这种数据表示进行建模时,需要仔细研究这种数据表征。

在Transformer中,注意力掩码是控制哪些输入可用于预测哪些输出的矩阵。

在序列中使用所有先前的token来为输出的预测提供信息的模式,会导致上三角形注意力矩阵,它一般会在因果解码器中被发现。

然而,由于输入进STUDY模型的序列不是按时间顺序的,尽管它的每个组成子序列都是按时间顺序,传统的因果解码器也不再适合这种序列。

在试图预测每个token时,模型不允许注意力转向序列中出现在它之前的每个token;其中一些token可能具有较晚的时间戳,并包含在部署时不可用的信息中。

你的朋友也在看!谷歌STUDY算法加持书单推荐系统,让学生爱上阅读图片

因果解码器中通常使用的注意力掩码。每一列代表一个输出,每一列代表一个输出。矩阵条目在特定位置的值为1(显示为蓝色),表示模型在预测相应列的输出时可以观察到该行的输入,而值为0(显示为白色)则表示相反。

STUDY 模型以因果转换器为基础,将三角矩阵注意力掩码替换为基于时间戳的灵活注意力掩码,从而允许跨不同子序列的注意力。

与普通转换器相比,STUDY 模型在一个序列中保持一个因果三角注意矩阵,并在不同序列中具有灵活的值,这些值取决于时间戳。

因此,序列中任何输出点的预测都会参考相对于当前时间点过去发生的所有输入点,无论它们是出现在序列中当前输入点之前还是之后。

这一因果约束非常重要,因为如果在训练时不执行这一约束,模型就有可能学会利用未来的信息进行预测,而这在现实世界的部署中是无法实现的。

你的朋友也在看!谷歌STUDY算法加持书单推荐系统,让学生爱上阅读图片

(a)一个具有因果注意力的顺序自回归变换器,它可以单独处理每个用户;(b)一个等效的联合前向传递,其计算结果与(a)相同;(c)通过在注意力掩码中引入新的非零值(紫色显示),允许信息在用户间流动。为此,研究者允许预测以时间戳较早的所有交互为条件,而不论交互是否来自同一用户

实验

谷歌使用Learning Ally数据集来训练STUDY模型,并使用多个基线进行比较。

团队使用了自回归点击率转换解码器(称之为「个人」)、k-近邻基线(KNN)和可比较的社会基线——社会注意力记忆网络(SAMN)。

他们使用第一学年的数据进行训练,使用第二学年的数据进行验证和测试。

团队通过测量用户实际交互的下一个项目,在模型的前n个建议中的时间百分比,来评估这些模型。

除了在整个测试集上对模型进行评估外,团队还报告了模型在测试集的两个子集上的得分,这两个子集比整个数据集更具挑战性。

可以观察到,学生通常会与有声读物进行多次互动,因此,简单地推荐用户阅读的最后一本书,就显得微不足道。

因此,研究者将第一个测试子集称为「非延续」,在这个子集中,我们只考察每个模型在学生与不同于前一次互动的书籍进行互动时的推荐性能。

另外,团队还观察到,学生们会重温他们过去读过的书,因此,将为每个学生推荐的书本限制在他们过去读过的书本范围内,就可以在测试集上取得很好的表现。

尽管向学生推荐他们过去最喜欢的书籍可能有一定的价值,但推荐系统的大部分价值还是来自于向用户推荐新的、未知的内容。

为了衡量这一点,团队在测试集的子集上对模型进行了评估,在这个子集上,学生们第一次与书目进行交互。我们将这个评估子集命名为「新子集」。

可以发现,「STUDY 」在几乎所有评估中,都优于其他模型。

你的朋友也在看!谷歌STUDY算法加持书单推荐系统,让学生爱上阅读图片

适当分组的重要性

STUDY算法的核心是将用户分组,并在模型的单次前向传递中对同组的多个用户进行联合推断。

研究人员通过一项消融研究,考察了实际分组对模型性能的重要性。

在提出的模型中,研究人员将同一年级和学校的所有学生进行分组。

然后试验了由同一年级和同一学区的所有学生定义的分组,以及将所有学生归入一个组中,并在每次前向传递时使用随机子集的分组。

研究人员还将这些模型与 「个人」模型进行了比较,以供参考。

研究发现,使用更本地化的小组更有效,即学校和年级分组优于学区和年级分组。

这支持了一个假设,即研究模式之所以成功,是因为阅读等活动具有社会性:人们的阅读选择很可能与周围人的阅读选择相关联。

在不使用年级对学生进行分组的情况下,这两种模式的表现都优于其他两种模式(单一小组模式和个人模式)。

这表明,阅读水平和兴趣相似的用户的数据有利于提高模型的性能。

最后,谷歌的这项研究是仅限于假定社交关系是同质的用户群进行建模的。

参考资料:

https://www.php.cn/link/0b32f1a9efe5edf3dd2f38b0c0052bfe

以上是你的朋友也在看!谷歌STUDY算法加持书单推荐系统,让学生爱上阅读的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
如何在Microsoft Word中删除作者和上次修改的信息如何在Microsoft Word中删除作者和上次修改的信息Apr 15, 2023 am 11:43 AM

Microsoft Word文档在保存时包含一些元数据。这些详细信息用于在文档上识别,例如创建时间、作者是谁、修改日期等。它还具有其他信息,例如字符数,字数,段落数等等。如果您可能想要删除作者或上次修改的信息或任何其他信息,以便其他人不知道这些值,那么有一种方法。在本文中,让我们看看如何删除文档的作者和上次修改的信息。删除微软Word文档中的作者和最后修改的信息步骤 1 –转到

如何与NameDrop共享联系人详细信息:iOS 17的操作指南如何与NameDrop共享联系人详细信息:iOS 17的操作指南Sep 16, 2023 pm 06:09 PM

在iOS17中,有一个新的AirDrop功能,让你通过触摸两部iPhone来与某人交换联系信息。它被称为NameDrop,这是它的工作原理。NameDrop允许您简单地将iPhone放在他们的iPhone附近以交换联系方式,而不是输入新人的号码来给他们打电话或发短信,以便他们拥有您的号码。将两个设备放在一起将自动弹出联系人共享界面。点击弹出窗口会显示一个人的联系信息及其联系人海报(您可以自定义和编辑自己的照片,也是iOS17的新功能)。该屏幕还包括“仅接收”或共享您自己的联系信息作为响应的选项。

获取 Windows 11 中 GPU 的方法及显卡详细信息检查获取 Windows 11 中 GPU 的方法及显卡详细信息检查Nov 07, 2023 am 11:21 AM

使用系统信息单击“开始”,然后输入“系统信息”。只需单击程序,如下图所示。在这里,您可以找到大多数系统信息,而显卡信息也是您可以找到的一件事。在“系统信息”程序中,展开“组件”,然后单击“显示”。让程序收集所有必要的信息,一旦准备就绪,您就可以在系统上找到特定于显卡的名称和其他信息。即使您有多个显卡,您也可以从这里找到与连接到计算机的专用和集成显卡相关的大多数内容。使用设备管理器Windows11就像大多数其他版本的Windows一样,您也可以从设备管理器中找到计算机上的显卡。单击“开始”,然后

元宇宙虚拟现实应用教育高峰论坛在郑州举行元宇宙虚拟现实应用教育高峰论坛在郑州举行Nov 30, 2023 pm 08:33 PM

在郑州举行了一场元宇宙虚拟现实应用教育高峰论坛在元宇宙虚拟现实应用教育高峰论坛上,河南艺术职业学院教师董玉姗的舞蹈《浮光》展现了轻盈、柔美的舞姿。与此同时,虚拟人在元宇宙空间中也同步起舞,他们流畅优美的舞姿令众多嘉宾赞叹不已11月24日,元宇宙虚拟现实应用教育高峰论坛在郑州举行,来自行业领域的专家学者,重点科研院所、高校代表,行业协会、知名企业代表共济一堂,共话元宇宙发展趋势。“元宇宙是近年来一个常谈的话题,它为动漫产业带来了无限的可能性。”河南省动漫产业协会副理事长王旭东在致辞中表示,近年来国

利用多光照信息的单视角NeRF算法S^3-NeRF,可恢复场景几何与材质信息利用多光照信息的单视角NeRF算法S^3-NeRF,可恢复场景几何与材质信息Apr 13, 2023 am 10:58 AM

目前图像 3D 重建工作通常采用恒定自然光照条件下从多个视点(multi-view)捕获目标场景的多视图立体重建方法(Multi-view Stereo)。然而,这些方法通常假设朗伯表面,并且难以恢复高频细节。另一种场景重建方法是利用固定视点但不同点光源下捕获的图像。例如光度立体 (Photometric Stereo) 方法就采用这种设置并利用其 shading 信息来重建非朗伯物体的表面细节。然而,现有的单视图方法通常采用法线贴图(normal map)或深度图(depth map)来表征可

NameDrop 如何在 iPhone 上工作(以及如何禁用它)NameDrop 如何在 iPhone 上工作(以及如何禁用它)Nov 30, 2023 am 11:53 AM

在iOS17中,有一项新的AirDrop功能,可让您通过同时触摸两部iPhone来与某人交换联系信息。它被称为NameDrop,这是它的实际工作原理。NameDrop无需输入新人的号码来给他们打电话或发短信,以便他们拥有您的号码,您只需将iPhone靠近他们的iPhone即可交换联系方式。将两台设备放在一起会自动弹出联系人共享界面。点击弹出窗口会显示一个人的联系信息和他们的联系人海报(您可以自定义和编辑的您自己的照片,也是iOS17的新功能)。该屏幕还包括“仅接收”或共享您自己的联系信息作为响应

微信收到信息延迟是怎么回事微信收到信息延迟是怎么回事Sep 19, 2023 pm 03:02 PM

微信收到信息延迟的原因可能是网络问题、服务器负载、版本问题、设备问题、消息发送问题或其他因素等。详细介绍:1、网络问题,微信收到信息的延迟可能与网络连接有关,如果网络连接不稳定或信号弱,可能导致信息传输延迟,请确保手机已经连接到稳定的网络,并且网络信号强度良好;2、服务器负载,当微信服务器负载较高时,可能会导致信息传输的延迟,特别是在繁忙的时间段或大量用户同时使用微信时等等。

计算机网络中信息的传递是以什么为单位计算机网络中信息的传递是以什么为单位Dec 07, 2020 pm 05:26 PM

计算机网络中信息的传递是以“字”为单位的;字是数据传送的基本单位。计算机网络有两个主要功能:数据通信和资源共享,而数据通信中传递的信息均以二进制数据形式来表现。数据通信是依照一定的通信协议,利用数据传输技术在两个终端之间传递数据信息的一种通信方式和通信业务。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具