搜索
首页web前端js教程JavaScript 中图的实现

JavaScript 中图的实现

Sep 13, 2023 pm 12:49 PM

JavaScript 中图的实现

图是一种非线性数据结构,表示一组顶点(也称为节点)以及它们之间的关系(或边)。顶点表示实体或对象,而表示顶点之间的关系或连接。图可用于对许多不同类型的关系进行建模,例如社交网络、交通系统或信息流。

图有两种主要类型:有向图(也称为有向图)和无向图。在有向图中,边有一个方向,并且只能在一个方向上遍历,即从起始顶点到结束顶点。在无向图中,边没有方向,可以在两个方向上遍历。

JavaScript 中图的实现

图可以使用邻接矩阵或邻接列表来实现。在这里,我们将使用邻接列表在 JavaScript 中实现图形。

创建图表类

这里我们创建了图形类的蓝图。

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
}

添加顶点

该函数通过在 adjacencyList 对象中创建一个新键并将空数组作为其值来向图中添加一个新顶点(或节点)。新顶点将作为键,空数组将用于存储其邻居。

addVertex(vertex) {
   if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
}

添加边缘

此函数在两个顶点之间添加一条新边。它接受两个参数:vertex1 和 vertex2,并将 vertex2 添加到 vertex1 的邻居数组中,反之亦然。这会在两个顶点之间创建连接。

addEdge(vertex1, vertex2) {
   this.adjacencyList[vertex1].push(vertex2);
   this.adjacencyList[vertex2].push(vertex1);
}

打印图表

此函数将图表记录到控制台。它迭代 adjacencyList 对象中的每个顶点并记录该顶点及其邻居。

print() {
   for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
      console.log(`${vertex} -> ${edges.join(", ")}`);
   }
}

示例

在下面的示例中,我们定义一个图并向该图添加顶点和边。最后打印图表。

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
   addVertex(vertex) {
      if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
   }
   addEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1].push(vertex2);
      this.adjacencyList[vertex2].push(vertex1);
   }
   print() {
      for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
         console.log(`${vertex} -> ${edges.join(", ")}`);
      }
   }
}
const graph = new Graph();
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("B", "D");
graph.addEdge("C", "D");
console.log("Graph:");
graph.print();

输出

Graph:
A -> B, C
B -> A, D
C -> A, D
D -> B, C

删除边

此函数删除两个顶点之间的边。它接受两个参数:vertex1 和 vertex2,并从 vertex1 的邻居数组中过滤掉 vertex2,反之亦然。

removeEdge(vertex1, vertex2) {
   this.adjacencyList[vertex1] = this.adjacencyList[vertex1].filter(
      (v) => v !== vertex2
   );
   this.adjacencyList[vertex2] = this.adjacencyList[vertex2].filter(
      (v) => v !== vertex1
   );
}

删除顶点

该函数从图中删除一个顶点。它接受一个顶点参数,并首先删除连接到该顶点的所有边。然后,它从 adjacencyList 对象中删除该键。

removeVertex(vertex) {
   while (this.adjacencyList[vertex].length) {
      const adjacentVertex = this.adjacencyList[vertex].pop();
      this.removeEdge(vertex, adjacentVertex);
   }
   delete this.adjacencyList[vertex];
}

示例

在下面的示例中,我们定义一个图并添加顶点和边,然后打印该图。我们从图中删除一条边 AC,最后打印结果图。

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
   addVertex(vertex) {
      if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
   }
   addEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1].push(vertex2);
      this.adjacencyList[vertex2].push(vertex1);
   }
   removeEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1] = this.adjacencyList[vertex1].filter(
         (v) => v !== vertex2
      );
      this.adjacencyList[vertex2] = this.adjacencyList[vertex2].filter(
         (v) => v !== vertex1
      );
   }
   removeVertex(vertex) {
      while (this.adjacencyList[vertex].length) {
         const adjacentVertex = this.adjacencyList[vertex].pop();
         this.removeEdge(vertex, adjacentVertex);
      }
      delete this.adjacencyList[vertex];
   }
   print() {
      for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
         console.log(`${vertex} -> ${edges.join(", ")}`);
      }
   }
}
const graph = new Graph();
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("B", "D");
graph.addEdge("C", "D");
console.log("Initial Graph:");
graph.print();
console.log("Graph after removal of edge AC:")
graph.removeEdge("A","C");
graph.print();

输出

Initial Graph:
A -> B, C
B -> A, D
C -> A, D
D -> B, C
Graph after removal of edge AC:
A -> B
B -> A, D
C -> D
D -> B, C

图的遍历方法

图遍历是指访问图的所有顶点(或节点)并处理与其关联的信息的过程。图遍历是图算法中的重要操作,用于查找两个节点之间的最短路径、检测环路、查找连通分量等任务。

图遍历主要有两种方法:广度优先搜索(BFS)和深度优先搜索(DFS)

A.广度优先搜索(BFS)

它是使用breadthFirstSearch()函数实现的。该函数实现广度优先搜索算法并采用 start 参数,即起始顶点。它使用队列来跟踪要访问的顶点,使用结果数组来存储访问过的顶点,并使用访问对象来跟踪已经访问过的顶点。该函数首先将起始顶点添加到队列中并将其标记为已访问。然后,当队列不为空时,它从队列中取出第一个顶点,将其添加到结果数组中,并将其标记为已访问。然后它将所有未访问的邻居添加到队列中。这个过程一直持续到所有顶点都被访问过,并且结果数组作为 BFS 的结果返回。

breadthFirstSearch(start) {
   const queue = [start];
   const result = [];
   const visited = {};
   let currentVertex;
   visited[start] = true;
   while (queue.length) {
      currentVertex = queue.shift();
      result.push(currentVertex);
         this.adjacencyList[currentVertex].forEach((neighbor) => {
            if (!visited[neighbor]) {
               visited[neighbor] = true;
               queue.push(neighbor);
            }
         });
      }
      return result;
   }
}

B。深度优先搜索

深度优先搜索方法通过使用以顶点作为参数的递归内部函数 dfs 来实现 DFS 算法。该函数使用访问的对象来跟踪访问的顶点,并将每个访问的顶点添加到结果数组中。该函数首先将当前顶点标记为已访问并将其添加到结果数组中。然后,它迭代当前顶点的所有邻居,并为每个未访问的邻居递归调用 dfs 函数。该过程一直持续到所有顶点都被访问过并且结果数组作为 DFS 的结果返回。

depthFirstSearch(start) {
   const result = [];
   const visited = {};
   const adjacencyList = this.adjacencyList;
   (function dfs(vertex) {
      if (!vertex) return null;
      visited[vertex] = true;
      result.push(vertex);
      adjacencyList[vertex].forEach(neighbor => {
         if (!visited[neighbor]) {
            return dfs(neighbor);
         }
      });
   })(start);
   return result;
}

示例

在下面的示例中,我们演示了广度优先搜索(BFS)和深度优先搜索(DFS)。

class Graph {
   constructor() {
      this.adjacencyList = {};
   }
   addVertex(vertex) {
      if (!this.adjacencyList[vertex]) this.adjacencyList[vertex] = [];
   }
   addEdge(vertex1, vertex2) {
      this.adjacencyList[vertex1].push(vertex2);
      this.adjacencyList[vertex2].push(vertex1);
   }
   print() {
      for (const [vertex, edges] of Object.entries(this.adjacencyList)) {
         console.log(`${vertex} -> ${edges.join(", ")}`);
      }
   }
   breadthFirstSearch(start) {
      const queue = [start];
      const result = [];
      const visited = {};
      let currentVertex;
      visited[start] = true;
      while (queue.length) {
         currentVertex = queue.shift();
         result.push(currentVertex);
         this.adjacencyList[currentVertex].forEach((neighbor) => {
            if (!visited[neighbor]) {
               visited[neighbor] = true;
               queue.push(neighbor);
            }
         });
      }
      return result;
   }
   depthFirstSearch(start) {
      const result = [];
      const visited = {};
      const adjacencyList = this.adjacencyList;
      (function dfs(vertex) {
         if (!vertex) return null;
         visited[vertex] = true;
         result.push(vertex);
         adjacencyList[vertex].forEach(neighbor => {
            if (!visited[neighbor]) {
               return dfs(neighbor);
            }
         });
      })(start);
      return result;
   }
}
const graph = new Graph();
graph.addVertex("A");
graph.addVertex("B");
graph.addVertex("C");
graph.addVertex("D");
graph.addEdge("A", "B");
graph.addEdge("A", "C");
graph.addEdge("B", "D");
graph.addEdge("C", "D");
console.log("Initial Graph:");
graph.print();
console.log("BFS: "+graph.breadthFirstSearch('A'));
console.log("DFS: "+graph.depthFirstSearch('A'));

输出

Initial Graph:
A -> B, C
B -> A, D
C -> A, D
D -> B, C
BFS: A,B,C,D
DFS: A,B,D,C

结论

图是一种有用的数据结构,可用于表示对象之间的关系和连接。在 JavaScript 中实现图可以使用多种技术来完成,包括使用邻接列表或邻接矩阵。本答案中演示的 Graph 类使用邻接列表表示形式,其中每个顶点都作为键存储在对象中,其相应的边作为该键的值存储在数组中。

Graph 类实现了向图形添加顶点和边、打印图形以及执行深度优先搜索和广度优先搜索遍历的方法。

以上是JavaScript 中图的实现的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:tutorialspoint。如有侵权,请联系admin@php.cn删除
JavaScript是用C编写的吗?检查证据JavaScript是用C编写的吗?检查证据Apr 25, 2025 am 12:15 AM

是的,JavaScript的引擎核心是用C语言编写的。1)C语言提供了高效性能和底层控制,适合JavaScript引擎的开发。2)以V8引擎为例,其核心用C 编写,结合了C的效率和面向对象特性。3)JavaScript引擎的工作原理包括解析、编译和执行,C语言在这些过程中发挥关键作用。

JavaScript的角色:使网络交互和动态JavaScript的角色:使网络交互和动态Apr 24, 2025 am 12:12 AM

JavaScript是现代网站的核心,因为它增强了网页的交互性和动态性。1)它允许在不刷新页面的情况下改变内容,2)通过DOMAPI操作网页,3)支持复杂的交互效果如动画和拖放,4)优化性能和最佳实践提高用户体验。

C和JavaScript:连接解释C和JavaScript:连接解释Apr 23, 2025 am 12:07 AM

C 和JavaScript通过WebAssembly实现互操作性。1)C 代码编译成WebAssembly模块,引入到JavaScript环境中,增强计算能力。2)在游戏开发中,C 处理物理引擎和图形渲染,JavaScript负责游戏逻辑和用户界面。

从网站到应用程序:JavaScript的不同应用从网站到应用程序:JavaScript的不同应用Apr 22, 2025 am 12:02 AM

JavaScript在网站、移动应用、桌面应用和服务器端编程中均有广泛应用。1)在网站开发中,JavaScript与HTML、CSS一起操作DOM,实现动态效果,并支持如jQuery、React等框架。2)通过ReactNative和Ionic,JavaScript用于开发跨平台移动应用。3)Electron框架使JavaScript能构建桌面应用。4)Node.js让JavaScript在服务器端运行,支持高并发请求。

Python vs. JavaScript:比较用例和应用程序Python vs. JavaScript:比较用例和应用程序Apr 21, 2025 am 12:01 AM

Python更适合数据科学和自动化,JavaScript更适合前端和全栈开发。1.Python在数据科学和机器学习中表现出色,使用NumPy、Pandas等库进行数据处理和建模。2.Python在自动化和脚本编写方面简洁高效。3.JavaScript在前端开发中不可或缺,用于构建动态网页和单页面应用。4.JavaScript通过Node.js在后端开发中发挥作用,支持全栈开发。

C/C在JavaScript口译员和编译器中的作用C/C在JavaScript口译员和编译器中的作用Apr 20, 2025 am 12:01 AM

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。 1)C 用于解析JavaScript源码并生成抽象语法树。 2)C 负责生成和执行字节码。 3)C 实现JIT编译器,在运行时优化和编译热点代码,显着提高JavaScript的执行效率。

JavaScript在行动中:现实世界中的示例和项目JavaScript在行动中:现实世界中的示例和项目Apr 19, 2025 am 12:13 AM

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

JavaScript和Web:核心功能和用例JavaScript和Web:核心功能和用例Apr 18, 2025 am 12:19 AM

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能