We are given an integer array, a set of segment start and end pointers and a key value and the problem statement here is to find all the values in the given range which are smaller than or equal to the given key value.
Input − arr[] = {7, 8 , 1, 4 , 6 , 8 , 10 }
Segment 1: start = 2, end = 4, k = 2
Segment 2: start = 1, end = 6, k = 3
Output − Count of number which are smaller than or equal to key value in the given range are 2 6
Explanation − [8, 1, 4] represents the range from 2 to 4 and 2 is the 2nd smallest number in the range [7, 8 , 1, 4 , 6 , 8 ]代表从1到6的范围,6是范围内第三小的数字
输入 - arr[] = {2, 7 , 9, 4 , 6 , 5 , 1 |
段落1:起始位置=3,结束位置=6,k=4
段落2:起始位置=2,结束位置=5,k=3
输出 - 在给定范围内小于或等于关键值的数字的数量为:9 7
解释 - [9, 4 , 6 , 5]代表从3到6的范围,9是给定范围内第四小的数字 [7 , 9, 4 , 6 ] 表示从2到4的范围,7是给定段范围中第3小的数字
声明一个整数类型的数组。计算数组的大小。声明一个向量类型的变量,形成整数类型的对。开始FOR循环,将数据从数组推送到向量中。
对给定的向量进行排序。创建一个整数类型的向量数组,大小为MAX。
调用函数generateTree(1, 0, size - 1, vec, tree),并将getSmallestIndex设置为queryWrapper(2, 5, 2, size, vec, tree)。
打印input[getSmallestIndex]。
将getSmallestIndex设置为调用函数queryWrapper(1, 6, 4, size, vec, tree)。
在函数generateTree(int treeIndex, int leftIndex, int rightIndex, vector
检查IF leftIndex to rightIndex,然后设置 tree[treeIndex].push_back(a[leftIndex].second) and return
Set midValue to (leftIndex + rightIndex) / 2and call generateTree(2 * treeIndex, leftIndex, midValue, a, tree), generateTree(2 * treeIndex + 1, midValue + 1, rightIndex, a, tree) and merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex + 1].begin(). Set tree[2 * treeIndex + 1].end(),back_inserter(tree[treeIndex]))
Inside the function as int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector tree[])
Check IF startIndex to endIndex then return tree[treeIndex][0]
Set mid to (startIndex + endIndex) / 2, last_in_query_range to (upper_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin())
set first_in_query_range to (lower_bound(tree[2 * treeIndex].begin(),tree[2 * treeIndex].end(), queryStart) - tree[2 * treeIndex].begin()) and M to last_in_query_range - first_in_query_range
Check IF M greater than equals to key then return calculateKSmallest(startIndex, mid, queryStart,queryEnd, 2 * treeIndex, key, tree)
ELSE, then return calculateKSmallest(mid + 1, endIndex, queryStart, queryEnd, 2 * treeIndex + 1, key - M, tree).
Inside the function int queryWrapper(int queryStart, int queryEnd, int key, int n, vector
return call to the function calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree)
#include <bits/stdc++.h> using namespace std; const int MAX = 1000; void generateTree(int treeIndex, int leftIndex, int rightIndex, vector<pair<int, int> > &a, vector<int> tree[]){ if (leftIndex == rightIndex){ tree[treeIndex].push_back(a[leftIndex].second); return; } int midValue = (leftIndex + rightIndex) / 2; generateTree(2 * treeIndex, leftIndex, midValue, a, tree); generateTree(2 * treeIndex + 1, midValue + 1, rightIndex, a, tree); merge(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), tree[2 * treeIndex + 1].begin(), tree[2 * treeIndex + 1].end(), back_inserter(tree[treeIndex])); } int calculateKSmallest(int startIndex, int endIndex, int queryStart, int queryEnd, int treeIndex, int key, vector<int> tree[]){ if (startIndex == endIndex){ return tree[treeIndex][0]; } int mid = (startIndex + endIndex) / 2; int last_in_query_range = (upper_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(), queryEnd) - tree[2 * treeIndex].begin()); int first_in_query_range = (lower_bound(tree[2 * treeIndex].begin(), tree[2 * treeIndex].end(),queryStart) - tree[2 * treeIndex].begin()); int M = last_in_query_range - first_in_query_range; if (M >= key){ return calculateKSmallest(startIndex, mid, queryStart, queryEnd, 2 * treeIndex, key, tree); } else { return calculateKSmallest(mid + 1, endIndex, queryStart,queryEnd, 2 * treeIndex + 1, key - M, tree); } } int queryWrapper(int queryStart, int queryEnd, int key, int n, vector<pair<int, int> > &a, vector<int> tree[]){ return calculateKSmallest(0, n - 1, queryStart - 1, queryEnd - 1, 1, key, tree); } int main(){ int input[] = { 7, 8 , 1, 4 , 6 , 8 , 10 }; int size = sizeof(input)/sizeof(input[0]); vector<pair<int, int> > vec; for (int i = 0; i < size; i++) { vec.push_back(make_pair(input[i], i)); } sort(vec.begin(), vec.end()); vector<int> tree[MAX]; generateTree(1, 0, size - 1, vec, tree); cout<<"Count of number which are smaller than or equal to key value in the given range are:"<<endl; int getSmallestIndex = queryWrapper(2, 4, 2, size, vec, tree); cout << input[getSmallestIndex] << endl; getSmallestIndex = queryWrapper(1, 6, 3, size, vec, tree); cout << input[getSmallestIndex] << endl; return 0; }
如果我们运行上述代码,将会生成以下输出
Count of number which are smaller than or equal to key value in the given range are: 4 6
以上是在C++中的合并排序树的详细内容。更多信息请关注PHP中文网其他相关文章!