在这个问题中,我们得到一棵二叉树,我们需要从特定节点执行 dfs,其中我们假设给定节点作为根并从中执行 dfs。
在上面的树中假设我们需要执行 DFS节点 F
在本教程中,我们将应用一些非正统的方法,以便大大降低我们的时间复杂度,因此我们也能够在更高的约束条件下运行此代码。
方法 - 在这种方法中,我们不会简单地采用天真的方法,即我们简单地对每个节点应用 dfs,因为它不适用于更高的约束,因此我们尝试使用一些非正统的方法来避免获得 TLE。
#include <bits/stdc++.h> using namespace std; #define N 100000 // Adjacency list to store the // tree nodes connections vector<int> v[N]; unordered_map<int, int> mape; // will be used for associating the node with it's index vector<int> a; void dfs(int nodesunder[], int child, int parent){ // function for dfs and precalculation our nodesunder a.push_back(child); // storing the dfs of our tree // nodesunder of child subtree nodesunder[child] = 1; for (auto it : v[child]) { // performing normal dfs if (it != parent) { // as we the child can climb up to //it's parent so we are trying to avoid that as it will become a cycle dfs(nodesunder, it, child); // recursive call nodesunder[child] += nodesunder[it]; // storing incrementing the nodesunder //by the number of nodes under it's children } } } // Function to print the DFS of subtree of node void printDFS(int node, int nodesunder[]){ int ind = mape[node]; // index of our node in the dfs array cout << "The DFS of subtree " << node << ": "; // print the DFS of subtree for (int i = ind; i < ind + nodesunder[node]; i++){ // going through dfs array and then //printing all the nodes under our given node cout << a[i] << " "; } cout << endl; } void addEdgetoGraph(int x, int y){ // for maintaining adjacency list v[x].push_back(y); v[y].push_back(x); } void mark(){ // marking each node with it's index in dfs array int size = a.size(); // marks the index for (int i = 0; i < size; i++) { mape[a[i]] = i; } } int main(){ int n = 7; // add edges of a tree addEdgetoGraph(1, 2); addEdgetoGraph(1, 3); addEdgetoGraph(2, 4); addEdgetoGraph(2, 5); addEdgetoGraph(4, 6); addEdgetoGraph(4, 7); // array to store the nodes present under of subtree // of every node in a tree int nodesunder[n + 1]; dfs(nodesunder, 1, 0); // generating our nodesunder array mark(); // marking the indices in map // Query 1 printDFS(2, nodesunder); // Query 2 printDFS(4, nodesunder); return 0; }
输出
The DFS of subtree 2: 2 4 6 7 5 The DFS of subtree 4: 4 6 7
理解代码
在这种方法中,我们预先计算 dfs 的顺序并将其存储在向量中,当我们预先计算 dfs 时,我们还计算从每个节点开始的每个子树下存在的节点,并且然后我们只需从 then 节点的起始索引遍历到其子树中存在的所有节点数。
结论
在本教程中,我们解决了一个问题来解决以下查询:树中子树的 DFS。我们还学习了针对此问题的C++程序以及解决此问题的完整方法(Normal)。
我们可以用其他语言(例如C、java、python等语言)编写相同的程序。希望这篇文章对您有所帮助。
以上是在一棵树中,使用C++查询子树的深度优先搜索的详细内容。更多信息请关注PHP中文网其他相关文章!

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C#和C 的学习曲线和开发者体验有显着差异。 1)C#的学习曲线较平缓,适合快速开发和企业级应用。 2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

C#和C 在面向对象编程(OOP)中的实现方式和特性上有显着差异。 1)C#的类定义和语法更为简洁,支持如LINQ等高级特性。 2)C 提供更细粒度的控制,适用于系统编程和高性能需求。两者各有优势,选择应基于具体应用场景。

从XML转换到C 并进行数据操作可以通过以下步骤实现:1)使用tinyxml2库解析XML文件,2)将数据映射到C 的数据结构中,3)使用C 标准库如std::vector进行数据操作。通过这些步骤,可以高效地处理和操作从XML转换过来的数据。

C#使用自动垃圾回收机制,而C 采用手动内存管理。1.C#的垃圾回收器自动管理内存,减少内存泄漏风险,但可能导致性能下降。2.C 提供灵活的内存控制,适合需要精细管理的应用,但需谨慎处理以避免内存泄漏。

C 在现代编程中仍然具有重要相关性。1)高性能和硬件直接操作能力使其在游戏开发、嵌入式系统和高性能计算等领域占据首选地位。2)丰富的编程范式和现代特性如智能指针和模板编程增强了其灵活性和效率,尽管学习曲线陡峭,但其强大功能使其在今天的编程生态中依然重要。

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业

C#适合需要高开发效率和跨平台支持的项目,而C 适用于需要高性能和底层控制的应用。1)C#简化开发,提供垃圾回收和丰富类库,适合企业级应用。2)C 允许直接内存操作,适用于游戏开发和高性能计算。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

Dreamweaver Mac版
视觉化网页开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。