在协调加权图表中,找到具有精确 k 个边的最简短路径的问题包括确定在精确导航 k 个边时权重最小的路径。这将通过采用动态编程策略来实现,例如采用 3D 框架来存储所有可想到的方式中的最小权重。计算在顶点和边上重复,在每一步都调整最小权重。通过考虑具有精确 k 个边的所有可能的方式,计算可以区分图表中具有 k 个边的最有限的方式。
使用的方法
朴素递归方法
带边缘约束的 Dijkstra 算法
朴素递归方法
朴素递归方法可能是解决问题的一种重要而明确的策略,包括将复杂的问题分解为更小的子问题并递归地解决它们。在这种方法中,作品多次调用自身来探究子问题,直到达到基本情况。尽管如此,由于重复计算和覆盖子问题,对于更大的问题发生可能会造成浪费。它需要诸如记忆或能量编程之类的优化方法。容易受骗的递归方法很容易获得和实现,但可能会承受指数时间复杂度。它通常用于解决小规模问题或作为更优化计算的起点。
算法
表征工作最短路径(图、u、v、k),该路径以图表、源顶点 u、目标顶点 v 和边数 k 作为输入。
检查基本情况:
a。如果 k 和 u 与 v 收支平衡,则返回(因为在这种情况下不允许有边)。
第二个。如果 k 为 1 并且图表中 u 和 v 之间存在边,则返回其权重。
c.如果 k 小于或等于 0,则返回无边界(因为不允许负边缘或零边缘)。
初始化一个无限的变量res来存储最短路径距离。
图表应按如下方式迭代所有顶点:
a。如果 u 和 i 没有上升到 u 或 v,则从 u 到 i 存在一条边:
递归调用shortestPath,其中i为现代源顶点,v为目标顶点,k−1为剩余边数。
如果返回的结果不是无限的,则将res升级为res和当前边的权重与递归结果的最小值。
返回 res 的值,作为精确分离 k 个边的最有限方式。
示例
#include <iostream> #include <climits> #define V 4 #define INF INT_MAX int shortestPathWithKEdges(int graph[][V], int source, int destination, int k) { // Base cases if (k == 0 && source == destination) return 0; if (k == 1 && graph[source][destination] != INF) return graph[source][destination]; if (k <= 0) return INF; // Initialize result int shortestPathDistance = INF; // Explore all adjacent vertices of the source vertex for (int i = 0; i < V; i++) { if (graph[source][i] != INF && source != i && destination != i) { int recursiveDistance = shortestPathWithKEdges(graph, i, destination, k - 1); if (recursiveDistance != INF) shortestPathDistance = std::min(shortestPathDistance, graph[source][i] + recursiveDistance); } } return shortestPathDistance; } int main() { int graph[V][V] = { {0, 10, 3, 2}, {INF, 0, INF, 7}, {INF, INF, 0, 6}, {INF, INF, INF, 0} }; int source = 0, destination = 3, k = 2; std::cout << "Weight of the shortest path is " << shortestPathWithKEdges(graph, source, destination, k) << std::endl; return 0; }
输出
Weight of the shortest path is 9
带边缘约束的 Dijkstra 算法
带边限制的 Dijkstra 算法是一种图表遍历计算,用于识别图表上源顶点与所有其他顶点之间的最短路径。它考虑了图表边缘的限制或约束,例如最极端或最不极端的边缘权重。该计算保留所需的顶点线并迭代地选择移除最少的顶点。此时,如果找到更短的路径,它会通过增加相邻顶点的间距来放松它们。此准备工作将持续进行,直到访问完所有顶点为止。具有边缘命令的 Dijkstra 算法保证所选择的方式满足所需的边缘限制,同时找到最有限的方式
算法
使用以下参数制作 Dijkstra 的作品
-
Graph:带有顶点和边的输入图表
来源:最有限路径的起始顶点
约束:边缘的限制或障碍
初始化一组已消失的顶点和一条用于存储顶点及其距离的需求线。
创建一个删除簇,并将除源顶点之外的所有顶点的删除设置为可终止性,源顶点设置为 0。
将源顶点以其距离排列到所需的行中。
虽然需求管线不可清除,但请执行以下操作:
将消除次数最少的顶点从所需队列中出列。
如果现在不再访问该顶点,
将其标记为已访问。
对于现代顶点的每个相邻顶点:
应用边缘障碍来确定是否可以考虑边缘。
考虑边缘权重和约束,计算从供给顶点到相邻顶点的未使用距离。
如果当前的分隔符比现代的分隔符短,请改进分隔符数组。
将相邻顶点以其未使用的距离排队到所需的行中。
到达所有顶点后,单独的簇将包含从供应顶点到满足边缘约束的每个顶点的最大短距离。
返回单独的簇作为结果。
示例
#include <iostream> #include <vector> #include <limits> struct Edge { int destination; int weight; }; void dijkstra(const std::vector<std::vector<Edge>>& graph, int source, std::vector<int>& distance) { int numVertices = graph.size(); std::vector<bool> visited(numVertices, false); distance.resize(numVertices, std::numeric_limits<int>::max()); distance[source] = 0; for (int i = 0; i < numVertices - 1; ++i) { int minDistance = std::numeric_limits<int>::max(); int minVertex = -1; for (int v = 0; v < numVertices; ++v) { if (!visited[v] && distance[v] < minDistance) { minDistance = distance[v]; minVertex = v; } } if (minVertex == -1) break; visited[minVertex] = true; for (const auto& edge : graph[minVertex]) { int destination = edge.destination; int weight = edge.weight; if (!visited[destination] && distance[minVertex] != std::numeric_limits<int>::max() && distance[minVertex] + weight < distance[destination]) { distance[destination] = distance[minVertex] + weight; } } } } int main() { int numVertices = 4; int source = 0; std::vector<std::vector<Edge>> graph(numVertices); // Add edges to the graph (destination, weight) graph[0] = {{1, 10}, {2, 3}}; graph[1] = {{2, 1}, {3, 7}}; graph[2] = {{3, 6}}; std::vector<int> distance; dijkstra(graph, source, distance); // Print the shortest distances from the source vertex std::cout << "Shortest distances from vertex " << source << ":\n"; for (int i = 0; i < numVertices; ++i) { std::cout << "Vertex " << i << ": " << distance[i] << '\n'; } return 0; }
输出
Shortest distances from vertex 0: Vertex 0: 0 Vertex 1: 10 Vertex 2: 3 Vertex 3: 9
结论
本文概述了两个重要的计算,以帮助理解协调和加权图表中的大多数问题。它阐明了易受骗的递归方法和带有边缘限制的 Dijkstra 计算。轻信递归方法包括递归地研究具有精确 k 个边的所有可能的方式,以发现最有限的方式。 Dijkstra 的边命令式计算采用了所需的线和面积规则,成功地找出了图表中从供给顶点到所有不同顶点的最大受限方式。本文包含了计算的具体说明,并给出了测试代码来说明其用法.
以上是在一个有向加权图中,求解恰好包含k条边的最短路径的详细内容。更多信息请关注PHP中文网其他相关文章!

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C#和C 的学习曲线和开发者体验有显着差异。 1)C#的学习曲线较平缓,适合快速开发和企业级应用。 2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

C#和C 在面向对象编程(OOP)中的实现方式和特性上有显着差异。 1)C#的类定义和语法更为简洁,支持如LINQ等高级特性。 2)C 提供更细粒度的控制,适用于系统编程和高性能需求。两者各有优势,选择应基于具体应用场景。

从XML转换到C 并进行数据操作可以通过以下步骤实现:1)使用tinyxml2库解析XML文件,2)将数据映射到C 的数据结构中,3)使用C 标准库如std::vector进行数据操作。通过这些步骤,可以高效地处理和操作从XML转换过来的数据。

C#使用自动垃圾回收机制,而C 采用手动内存管理。1.C#的垃圾回收器自动管理内存,减少内存泄漏风险,但可能导致性能下降。2.C 提供灵活的内存控制,适合需要精细管理的应用,但需谨慎处理以避免内存泄漏。

C 在现代编程中仍然具有重要相关性。1)高性能和硬件直接操作能力使其在游戏开发、嵌入式系统和高性能计算等领域占据首选地位。2)丰富的编程范式和现代特性如智能指针和模板编程增强了其灵活性和效率,尽管学习曲线陡峭,但其强大功能使其在今天的编程生态中依然重要。

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业

C#适合需要高开发效率和跨平台支持的项目,而C 适用于需要高性能和底层控制的应用。1)C#简化开发,提供垃圾回收和丰富类库,适合企业级应用。2)C 允许直接内存操作,适用于游戏开发和高性能计算。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

记事本++7.3.1
好用且免费的代码编辑器

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境