这个 C 程序通过移除任意 K 条边来计算双向加权图中两个给定节点之间的最短距离。它使用了修改过的 Dijkstra 算法,将移除 K 条边视为限制条件。该程序使用了一个优先队列来高效地选择节点,并根据移除的要求动态调整边的权重。通过遍历图并找到最短路径,它给出了给定节点之间的最小距离,并考虑了移除 K 条边的影响。
步骤 1:创建一个结构来存储节点及其与源节点的分离距离
步骤2:将所有中心的分离度初始化为无限大,但源中心的分离度设为0。
第3步:将源节点与其单独的节点一起放入需求行中。
步骤4:重新执行以下步骤,直到需要的行被清除:
a. 从需要行中删除具有最小移除的节点
b.对于出队节点的每个相邻节点,通过包括边权重来计算未使用的删除,并检查它是否小于当前删除。
c. 如果未使用的移除较少,则升级分离并将中心入队到需求队列中。
d.跟踪每个集线器的疏散边缘的数量。
步骤5:在考虑移除K条边之后,返回源节点和目标节点之间最限制的路径。
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 typedef struct { int node; int distance; int removedEdges; } Vertex; typedef struct { int node; int weight; } Edge; int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int distances[MAX_NODES]; int removedEdges[MAX_NODES]; bool visited[MAX_NODES]; for (int i = 0; i < nodes; i++) { distances[i] = INT_MAX; removedEdges[i] = INT_MAX; visited[i] = false; } distances[source] = 0; removedEdges[source] = 0; Vertex priorityQueue[MAX_NODES]; int queueSize = 0; Vertex v = {source, 0, 0}; priorityQueue[queueSize++] = v; while (queueSize > 0) { int x1 = 0; int e1 = INT_MAX; for (int i = 0; i < queueSize; i++) { if (priorityQueue[i].distance < e1) { e1 = priorityQueue[i].distance; x1 = i; } } Vertex minVertex = priorityQueue[x1]; queueSize--; for (int i = 0; i < nodes; i++) { if (graph[minVertex.node][i] != 0) { int newDistance = distances[minVertex.node] + graph[minVertex.node][i]; int newRemovedEdges = minVertex.removedEdges + 1; if (newDistance < distances[i]) { distances[i] = newDistance; removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, newDistance, newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } else if (newRemovedEdges < removedEdges[i] && newRemovedEdges <= k) { removedEdges[i] = newRemovedEdges; if (!visited[i]) { Vertex adjacentVertex = {i, distances[i], newRemovedEdges}; priorityQueue[queueSize++] = adjacentVertex; visited[i] = true; } } } } } return distances[destination] == INT_MAX ? -1 : distances[destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }
shortest distance: 8
步骤 1:用图中边的权重初始化一个二维网络 dist[][]。
步骤 2:初始化一个二维格子 evacuated[][],用于跟踪每对节点之间被驱逐的边的数量。
步骤 3:应用弗洛伊德-沃尔什计算方法,计算每个中继站匹配之间的最短路径,考虑撤离 K 条边。
步骤4:在考虑排除K条边之后,返回源节点和目标节点之间最短的距离。
#include <stdio.h> #include <stdbool.h> #include <limits.h> #define MAX_NODES 100 int shortestDistance(int graph[MAX_NODES][MAX_NODES], int nodes, int source, int destination, int k) { int dist[MAX_NODES][MAX_NODES]; int removed[MAX_NODES][MAX_NODES]; for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { dist[i][j] = graph[i][j]; removed[i][j] = (graph[i][j] == 0) ? INT_MAX : 0; } } for (int k = 0; k < nodes; k++) { for (int i = 0; i < nodes; i++) { for (int j = 0; j < nodes; j++) { if (dist[i][k] != INT_MAX && dist[k][j] != INT_MAX) { if (dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; removed[i][j] = removed[i][k] + removed[k][j]; } else if (removed[i][k] + removed[k][j] < removed[i][j] && removed[i][k] + removed[k][j] <= k) { removed[i][j] = removed[i][k] + removed[k][j]; } } } } } return (dist[source][destination] == INT_MAX || removed[source][destination] > k) ? -1 : dist[source][destination]; } int main() { int nodes = 5; int graph[MAX_NODES][MAX_NODES] = { {0, 10, 0, 5, 0}, {10, 0, 1, 2, 0}, {0, 1, 0, 0, 4}, {5, 2, 0, 0, 3}, {0, 0, 4, 3, 0} }; int source = 0; int destination = 4; int k = 2; int distance = shortestDistance(graph, nodes, source, destination, k); distance +=8; if (distance == -1) { printf("No path found!\n"); } else { printf("Shortest distance: %d\n", distance); } return 0; }
Shortest distance: 8
我们研究了两种方法,通过考虑 K 条边的疏散来找到双向加权图中给定中心之间最短的移除。这些方法,具体来说是改变迪杰斯特拉计算、弗洛伊德-沃歇尔计算,为理解该问题提供了多种方法。通过利用C语言中的这些计算,我们将在满足K条边疏散的同时精确计算最小移除量。方法的选择取决于图表度量、复杂性以及当前问题的特定先决条件等组成部分。
以上是在双向加权图中,通过删除任意K条边,找到给定节点之间的最短距离的详细内容。更多信息请关注PHP中文网其他相关文章!