搜索
首页web前端js教程JavaScript 机器学习:在浏览器中构建 ML 模型

JavaScript 机器学习:在浏览器中构建 ML 模型

机器学习 (ML) 彻底改变了各个行业,使计算机能够根据模式和数据进行学习和预测。传统上,机器学习模型是在服务器或高性能机器上构建和执行的。然而,随着 Web 技术的进步,现在可以使用 JavaScript 直接在浏览器中构建和部署 ML 模型。

在本文中,我们将探索 JavaScript 机器学习的激动人心的世界,并学习如何构建可以在浏览器中运行的 ML 模型。

了解机器学习

机器学习是人工智能 (AI) 的一个子集,专注于创建能够从数据中学习并做出预测或决策的模型。机器学习主要有两种类型:监督学习和无监督学习。

监督学习涉及在标记数据上训练模型,其中输入特征和相应的输出值是已知的。该模型从标记数据中学习模式,以对新的、未见过的数据进行预测。

另一方面,无监督学习处理未标记的数据。该模型无需任何预定义标签即可发现数据中隐藏的模式和结构。

JavaScript 机器学习库

要开始使用 JavaScript 机器学习,请按照以下步骤操作 -

第 1 步:安装 Node.js

Node.js 是一个 JavaScript 运行时环境,允许我们在 Web 浏览器之外运行 JavaScript 代码。它提供了使用 TensorFlow.js 所需的工具和库。

第 2 步:设置项目

安装 Node.js 后,打开您的首选代码编辑器并为您的 ML 项目创建一个新目录。使用命令行或终端导航到项目目录。

第 3 步:初始化 Node.js 项目

在命令行或终端中,运行以下命令来初始化新的 Node.js 项目 -

npm init -y

此命令创建一个新的 package.json 文件,用于管理项目依赖项和配置。

第 4 步:安装 TensorFlow.js

要安装 TensorFlow.js,请在命令行或终端中运行以下命令 -

npm install @tensorflow/tfjs

第 5 步:开始构建机器学习模型

现在您的项目已设置完毕并安装了 TensorFlow.js,您可以开始在浏览器中构建机器学习模型了。您可以创建一个新的 JavaScript 文件,导入 TensorFlow.js,并使用其 API 来定义、训练 ML 模型并进行预测。

让我们深入研究一些代码示例,以了解如何使用 TensorFlow.js 并在 JavaScript 中构建机器学习模型。

示例 1:线性回归

线性回归是一种监督学习算法,用于根据输入特征预测连续输出值。

让我们看看如何使用 TensorFlow.js 实现线性回归。

// Import TensorFlow.js library
import * as tf from '@tensorflow/tfjs';

// Define input features and output values
const inputFeatures = tf.tensor2d([[1], [2], [3], [4], [5]], [5, 1]);
const outputValues = tf.tensor2d([[2], [4], [6], [8], [10]], [5, 1]);

// Define the model architecture
const model = tf.sequential();
model.add(tf.layers.dense({ units: 1, inputShape: [1] }));

// Compile the model
model.compile({ optimizer: 'sgd', loss: 'meanSquaredError' });

// Train the model
model.fit(inputFeatures, outputValues, { epochs: 100 }).then(() => {
   // Make predictions
   const predictions = model.predict(inputFeatures);

   // Print predictions
   predictions.print();
});

说明

在此示例中,我们首先导入 TensorFlow.js 库。然后,我们将输入特征和输出值定义为张量。接下来,我们创建一个顺序模型并添加一个具有一个单元的密集层。我们使用“sgd”优化器和“meanSquaredError”损失函数编译模型。最后,我们训练模型 100 个 epoch,并对输入特征进行预测。预测的输出值将打印到控制台。

输出

Tensor
   [2.2019906],
   [4.124609 ],
   [6.0472274],
   [7.9698458],
   [9.8924646]]

示例 2:情感分析

情感分析是机器学习的一种流行应用,涉及分析文本数据以确定文本中表达的情感或情绪基调。我们可以使用 TensorFlow.js 构建情感分析模型,预测给定文本是否具有正面或负面情绪。

考虑下面所示的代码。

// Import TensorFlow.js library
import * as tf from '@tensorflow/tfjs';
import '@tensorflow/tfjs-node'; // Required for Node.js environment

// Define training data
const trainingData = [
   { text: 'I love this product!', sentiment: 'positive' },
   { text: 'This is a terrible experience.', sentiment: 'negative' },
   { text: 'The movie was amazing!', sentiment: 'positive' },
   // Add more training data...
];

// Prepare training data
const texts = trainingData.map(item => item.text);
const labels = trainingData.map(item => (item.sentiment === 'positive' ? 1 : 0));

// Tokenize and preprocess the texts
const tokenizedTexts = texts.map(text => text.toLowerCase().split(' '));
const wordIndex = new Map();
let currentIndex = 1;
const sequences = tokenizedTexts.map(tokens => {
   return tokens.map(token => {
      if (!wordIndex.has(token)) {
         wordIndex.set(token, currentIndex);
         currentIndex++;
      }
      return wordIndex.get(token);
   });
});

// Pad sequences
const maxLength = sequences.reduce((max, seq) => Math.max(max, seq.length), 0);
const paddedSequences = sequences.map(seq => {
   if (seq.length < maxLength) {
      return seq.concat(new Array(maxLength - seq.length).fill(0));
   }
   return seq;
});

// Convert to tensors
const paddedSequencesTensor = tf.tensor2d(paddedSequences);
const labelsTensor = tf.tensor1d(labels);

// Define the model architecture
const model = tf.sequential();
model.add(tf.layers.embedding({ inputDim: currentIndex, outputDim: 16, inputLength: maxLength }));
model.add(tf.layers.flatten());
model.add(tf.layers.dense({ units: 1, activation: 'sigmoid' }));

// Compile the model
model.compile({ optimizer: 'adam', loss: 'binaryCrossentropy', metrics: ['accuracy'] });

// Train the model
model.fit(paddedSequencesTensor, labelsTensor, { epochs: 10 }).then(() => {
   // Make predictions
   const testText = 'This product exceeded my expectations!';
   const testTokens = testText.toLowerCase().split(' ');
   const testSequence = testTokens.map(token => {
      if (wordIndex.has(token)) {
         return wordIndex.get(token);
      }
      return 0;
   });
   const paddedTestSequence = testSequence.length < maxLength ? testSequence.concat(new Array(maxLength - testSequence.length).fill(0)) : testSequence;
   const testSequenceTensor = tf.tensor2d([paddedTestSequence]);
   const prediction = model.predict(testSequenceTensor);
   const sentiment = prediction.dataSync()[0] > 0.5 ?  'positive' : 'negative';

   // Print the sentiment prediction
   console.log(`The sentiment of "${testText}" is ${sentiment}.`);
});

输出

Epoch 1 / 10
eta=0.0 ========================================================================> 
14ms 4675us/step - acc=0.00 loss=0.708 
Epoch 2 / 10
eta=0.0 ========================================================================> 
4ms 1428us/step - acc=0.667 loss=0.703 
Epoch 3 / 10
eta=0.0 ========================================================================> 
5ms 1733us/step - acc=0.667 loss=0.697 
Epoch 4 / 10
eta=0.0 ========================================================================> 
4ms 1419us/step - acc=0.667 loss=0.692 
Epoch 5 / 10
eta=0.0 ========================================================================> 
6ms 1944us/step - acc=0.667 loss=0.686 
Epoch 6 / 10
eta=0.0 ========================================================================> 
5ms 1558us/step - acc=0.667 loss=0.681 
Epoch 7 / 10
eta=0.0 ========================================================================> 
5ms 1513us/step - acc=0.667 loss=0.675 
Epoch 8 / 10
eta=0.0 ========================================================================> 
3ms 1057us/step - acc=1.00 loss=0.670 
Epoch 9 / 10
eta=0.0 ========================================================================> 
5ms 1745us/step - acc=1.00 loss=0.665 
Epoch 10 / 10
eta=0.0 ========================================================================> 
4ms 1439us/step - acc=1.00 loss=0.659 
The sentiment of "This product exceeded my expectations!" is positive.

以上是JavaScript 机器学习:在浏览器中构建 ML 模型的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:tutorialspoint。如有侵权,请联系admin@php.cn删除
JavaScript的角色:使网络交互和动态JavaScript的角色:使网络交互和动态Apr 24, 2025 am 12:12 AM

JavaScript是现代网站的核心,因为它增强了网页的交互性和动态性。1)它允许在不刷新页面的情况下改变内容,2)通过DOMAPI操作网页,3)支持复杂的交互效果如动画和拖放,4)优化性能和最佳实践提高用户体验。

C和JavaScript:连接解释C和JavaScript:连接解释Apr 23, 2025 am 12:07 AM

C 和JavaScript通过WebAssembly实现互操作性。1)C 代码编译成WebAssembly模块,引入到JavaScript环境中,增强计算能力。2)在游戏开发中,C 处理物理引擎和图形渲染,JavaScript负责游戏逻辑和用户界面。

从网站到应用程序:JavaScript的不同应用从网站到应用程序:JavaScript的不同应用Apr 22, 2025 am 12:02 AM

JavaScript在网站、移动应用、桌面应用和服务器端编程中均有广泛应用。1)在网站开发中,JavaScript与HTML、CSS一起操作DOM,实现动态效果,并支持如jQuery、React等框架。2)通过ReactNative和Ionic,JavaScript用于开发跨平台移动应用。3)Electron框架使JavaScript能构建桌面应用。4)Node.js让JavaScript在服务器端运行,支持高并发请求。

Python vs. JavaScript:比较用例和应用程序Python vs. JavaScript:比较用例和应用程序Apr 21, 2025 am 12:01 AM

Python更适合数据科学和自动化,JavaScript更适合前端和全栈开发。1.Python在数据科学和机器学习中表现出色,使用NumPy、Pandas等库进行数据处理和建模。2.Python在自动化和脚本编写方面简洁高效。3.JavaScript在前端开发中不可或缺,用于构建动态网页和单页面应用。4.JavaScript通过Node.js在后端开发中发挥作用,支持全栈开发。

C/C在JavaScript口译员和编译器中的作用C/C在JavaScript口译员和编译器中的作用Apr 20, 2025 am 12:01 AM

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。 1)C 用于解析JavaScript源码并生成抽象语法树。 2)C 负责生成和执行字节码。 3)C 实现JIT编译器,在运行时优化和编译热点代码,显着提高JavaScript的执行效率。

JavaScript在行动中:现实世界中的示例和项目JavaScript在行动中:现实世界中的示例和项目Apr 19, 2025 am 12:13 AM

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

JavaScript和Web:核心功能和用例JavaScript和Web:核心功能和用例Apr 18, 2025 am 12:19 AM

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

了解JavaScript引擎:实施详细信息了解JavaScript引擎:实施详细信息Apr 17, 2025 am 12:05 AM

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境