机器学习 (ML) 彻底改变了各个行业,使计算机能够根据模式和数据进行学习和预测。传统上,机器学习模型是在服务器或高性能机器上构建和执行的。然而,随着 Web 技术的进步,现在可以使用 JavaScript 直接在浏览器中构建和部署 ML 模型。
在本文中,我们将探索 JavaScript 机器学习的激动人心的世界,并学习如何构建可以在浏览器中运行的 ML 模型。
了解机器学习
机器学习是人工智能 (AI) 的一个子集,专注于创建能够从数据中学习并做出预测或决策的模型。机器学习主要有两种类型:监督学习和无监督学习。
监督学习涉及在标记数据上训练模型,其中输入特征和相应的输出值是已知的。该模型从标记数据中学习模式,以对新的、未见过的数据进行预测。
另一方面,无监督学习处理未标记的数据。该模型无需任何预定义标签即可发现数据中隐藏的模式和结构。
JavaScript 机器学习库
要开始使用 JavaScript 机器学习,请按照以下步骤操作 -
第 1 步:安装 Node.js
Node.js 是一个 JavaScript 运行时环境,允许我们在 Web 浏览器之外运行 JavaScript 代码。它提供了使用 TensorFlow.js 所需的工具和库。
第 2 步:设置项目
安装 Node.js 后,打开您的首选代码编辑器并为您的 ML 项目创建一个新目录。使用命令行或终端导航到项目目录。
第 3 步:初始化 Node.js 项目
在命令行或终端中,运行以下命令来初始化新的 Node.js 项目 -
npm init -y
此命令创建一个新的 package.json 文件,用于管理项目依赖项和配置。
第 4 步:安装 TensorFlow.js
要安装 TensorFlow.js,请在命令行或终端中运行以下命令 -
npm install @tensorflow/tfjs
第 5 步:开始构建机器学习模型
现在您的项目已设置完毕并安装了 TensorFlow.js,您可以开始在浏览器中构建机器学习模型了。您可以创建一个新的 JavaScript 文件,导入 TensorFlow.js,并使用其 API 来定义、训练 ML 模型并进行预测。
让我们深入研究一些代码示例,以了解如何使用 TensorFlow.js 并在 JavaScript 中构建机器学习模型。
示例 1:线性回归
线性回归是一种监督学习算法,用于根据输入特征预测连续输出值。
让我们看看如何使用 TensorFlow.js 实现线性回归。
// Import TensorFlow.js library import * as tf from '@tensorflow/tfjs'; // Define input features and output values const inputFeatures = tf.tensor2d([[1], [2], [3], [4], [5]], [5, 1]); const outputValues = tf.tensor2d([[2], [4], [6], [8], [10]], [5, 1]); // Define the model architecture const model = tf.sequential(); model.add(tf.layers.dense({ units: 1, inputShape: [1] })); // Compile the model model.compile({ optimizer: 'sgd', loss: 'meanSquaredError' }); // Train the model model.fit(inputFeatures, outputValues, { epochs: 100 }).then(() => { // Make predictions const predictions = model.predict(inputFeatures); // Print predictions predictions.print(); });
说明
在此示例中,我们首先导入 TensorFlow.js 库。然后,我们将输入特征和输出值定义为张量。接下来,我们创建一个顺序模型并添加一个具有一个单元的密集层。我们使用“sgd”优化器和“meanSquaredError”损失函数编译模型。最后,我们训练模型 100 个 epoch,并对输入特征进行预测。预测的输出值将打印到控制台。
输出
Tensor [2.2019906], [4.124609 ], [6.0472274], [7.9698458], [9.8924646]]
示例 2:情感分析
情感分析是机器学习的一种流行应用,涉及分析文本数据以确定文本中表达的情感或情绪基调。我们可以使用 TensorFlow.js 构建情感分析模型,预测给定文本是否具有正面或负面情绪。
考虑下面所示的代码。
// Import TensorFlow.js library import * as tf from '@tensorflow/tfjs'; import '@tensorflow/tfjs-node'; // Required for Node.js environment // Define training data const trainingData = [ { text: 'I love this product!', sentiment: 'positive' }, { text: 'This is a terrible experience.', sentiment: 'negative' }, { text: 'The movie was amazing!', sentiment: 'positive' }, // Add more training data... ]; // Prepare training data const texts = trainingData.map(item => item.text); const labels = trainingData.map(item => (item.sentiment === 'positive' ? 1 : 0)); // Tokenize and preprocess the texts const tokenizedTexts = texts.map(text => text.toLowerCase().split(' ')); const wordIndex = new Map(); let currentIndex = 1; const sequences = tokenizedTexts.map(tokens => { return tokens.map(token => { if (!wordIndex.has(token)) { wordIndex.set(token, currentIndex); currentIndex++; } return wordIndex.get(token); }); }); // Pad sequences const maxLength = sequences.reduce((max, seq) => Math.max(max, seq.length), 0); const paddedSequences = sequences.map(seq => { if (seq.length < maxLength) { return seq.concat(new Array(maxLength - seq.length).fill(0)); } return seq; }); // Convert to tensors const paddedSequencesTensor = tf.tensor2d(paddedSequences); const labelsTensor = tf.tensor1d(labels); // Define the model architecture const model = tf.sequential(); model.add(tf.layers.embedding({ inputDim: currentIndex, outputDim: 16, inputLength: maxLength })); model.add(tf.layers.flatten()); model.add(tf.layers.dense({ units: 1, activation: 'sigmoid' })); // Compile the model model.compile({ optimizer: 'adam', loss: 'binaryCrossentropy', metrics: ['accuracy'] }); // Train the model model.fit(paddedSequencesTensor, labelsTensor, { epochs: 10 }).then(() => { // Make predictions const testText = 'This product exceeded my expectations!'; const testTokens = testText.toLowerCase().split(' '); const testSequence = testTokens.map(token => { if (wordIndex.has(token)) { return wordIndex.get(token); } return 0; }); const paddedTestSequence = testSequence.length < maxLength ? testSequence.concat(new Array(maxLength - testSequence.length).fill(0)) : testSequence; const testSequenceTensor = tf.tensor2d([paddedTestSequence]); const prediction = model.predict(testSequenceTensor); const sentiment = prediction.dataSync()[0] > 0.5 ? 'positive' : 'negative'; // Print the sentiment prediction console.log(`The sentiment of "${testText}" is ${sentiment}.`); });
输出
Epoch 1 / 10 eta=0.0 ========================================================================> 14ms 4675us/step - acc=0.00 loss=0.708 Epoch 2 / 10 eta=0.0 ========================================================================> 4ms 1428us/step - acc=0.667 loss=0.703 Epoch 3 / 10 eta=0.0 ========================================================================> 5ms 1733us/step - acc=0.667 loss=0.697 Epoch 4 / 10 eta=0.0 ========================================================================> 4ms 1419us/step - acc=0.667 loss=0.692 Epoch 5 / 10 eta=0.0 ========================================================================> 6ms 1944us/step - acc=0.667 loss=0.686 Epoch 6 / 10 eta=0.0 ========================================================================> 5ms 1558us/step - acc=0.667 loss=0.681 Epoch 7 / 10 eta=0.0 ========================================================================> 5ms 1513us/step - acc=0.667 loss=0.675 Epoch 8 / 10 eta=0.0 ========================================================================> 3ms 1057us/step - acc=1.00 loss=0.670 Epoch 9 / 10 eta=0.0 ========================================================================> 5ms 1745us/step - acc=1.00 loss=0.665 Epoch 10 / 10 eta=0.0 ========================================================================> 4ms 1439us/step - acc=1.00 loss=0.659 The sentiment of "This product exceeded my expectations!" is positive.
以上是JavaScript 机器学习:在浏览器中构建 ML 模型的详细内容。更多信息请关注PHP中文网其他相关文章!

JavaScript是现代网站的核心,因为它增强了网页的交互性和动态性。1)它允许在不刷新页面的情况下改变内容,2)通过DOMAPI操作网页,3)支持复杂的交互效果如动画和拖放,4)优化性能和最佳实践提高用户体验。

C 和JavaScript通过WebAssembly实现互操作性。1)C 代码编译成WebAssembly模块,引入到JavaScript环境中,增强计算能力。2)在游戏开发中,C 处理物理引擎和图形渲染,JavaScript负责游戏逻辑和用户界面。

JavaScript在网站、移动应用、桌面应用和服务器端编程中均有广泛应用。1)在网站开发中,JavaScript与HTML、CSS一起操作DOM,实现动态效果,并支持如jQuery、React等框架。2)通过ReactNative和Ionic,JavaScript用于开发跨平台移动应用。3)Electron框架使JavaScript能构建桌面应用。4)Node.js让JavaScript在服务器端运行,支持高并发请求。

Python更适合数据科学和自动化,JavaScript更适合前端和全栈开发。1.Python在数据科学和机器学习中表现出色,使用NumPy、Pandas等库进行数据处理和建模。2.Python在自动化和脚本编写方面简洁高效。3.JavaScript在前端开发中不可或缺,用于构建动态网页和单页面应用。4.JavaScript通过Node.js在后端开发中发挥作用,支持全栈开发。

C和C 在JavaScript引擎中扮演了至关重要的角色,主要用于实现解释器和JIT编译器。 1)C 用于解析JavaScript源码并生成抽象语法树。 2)C 负责生成和执行字节码。 3)C 实现JIT编译器,在运行时优化和编译热点代码,显着提高JavaScript的执行效率。

JavaScript在现实世界中的应用包括前端和后端开发。1)通过构建TODO列表应用展示前端应用,涉及DOM操作和事件处理。2)通过Node.js和Express构建RESTfulAPI展示后端应用。

JavaScript在Web开发中的主要用途包括客户端交互、表单验证和异步通信。1)通过DOM操作实现动态内容更新和用户交互;2)在用户提交数据前进行客户端验证,提高用户体验;3)通过AJAX技术实现与服务器的无刷新通信。

理解JavaScript引擎内部工作原理对开发者重要,因为它能帮助编写更高效的代码并理解性能瓶颈和优化策略。1)引擎的工作流程包括解析、编译和执行三个阶段;2)执行过程中,引擎会进行动态优化,如内联缓存和隐藏类;3)最佳实践包括避免全局变量、优化循环、使用const和let,以及避免过度使用闭包。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

记事本++7.3.1
好用且免费的代码编辑器

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境