首页  >  文章  >  后端开发  >  如何在Python中执行F检验

如何在Python中执行F检验

WBOY
WBOY转载
2023-09-09 20:45:021169浏览

统计学家使用 F 检验来检查两个数据集是否具有相同的方差。 F 检验以罗纳德·费舍尔爵士的名字命名。为了使用 F 检验,我们做出两个假设,一个原假设和一个备择假设。然后我们选择 F 检验认可的这两个假设中的任何一个。

方差是一种数据分布度量,用于说明数据与平均值的偏差。较高的值比较较小的值显示出更大的离散度。

在本文中,您将学习如何在Python编程语言中执行F-Test以及其使用案例。

F-测试过程

执行F-检验的过程如下:

  • 首先,定义原假设和备择假设。

    • 零假设或H0:σ12 = σ22(总体方差相等)

    • 替代假设或 H1:σ12 ≠ σ22(总体方差不相等)

  • 选择用于测试的统计数据。

  • 计算总体的自由度。例如,如果 m 和 n 是总体形状,则自由度分别表示为 (df1) = m–1 和 (df2) = n – 1

  • 现在从 F 表中查找 F 值。

  • 最后,将双尾检验的 alpha 值除以 2,计算出临界值。

因此,我们使用总体的自由度定义 F 值。我们读取第一行中的 df1,而第一列中的 df2。

有各种用于独特自由度的 F 表。我们将步骤 2 中的 F 统计量与步骤 4 中计算的临界值进行比较。如果临界值小于 F 统计量,我们可以拒绝原假设。相反,当临界值在某个显着水平上大于F统计量时,我们可以接受原假设。

如何在Python中执行F检验

假设

在进行基于数据集的F-检验之前,我们做出了一些假设。

  • 数据总体服从正态分布,即符合钟形曲线。

  • 样本之间不相关,即人群中不存在多重共线性。

除了这些假设之外,在进行F检验时,我们还应考虑以下关键要点:

  • 最大方差值应该在分子中以执行右尾检验。

  • 在双尾检验中,将alpha除以2后确定临界值。

  • 检查是否存在方差或标准差。

  • 如果 F 表中没有自由度,则以最大值作为临界值。

F-Test在Python中的应用

语法

scipy stats.f()

参数

x :  quantiles
q :  lower or upper tail probability
dfn, dfd shape parameters
loc :location parameter
scale :  scale parameter (default=1)
size :  random variate shape
moments : [‘mvsk’] letters, specifying which moments to compute

Explanation

的中文翻译为:

解释

在这种方法中,用户必须将f_value和每个数组的可迭代长度传递给scipy.stats.f.cdf(),并将其减去1以执行F检验。

算法

  • 首先,导入NumPy和Scipy.stats库进行操作。

  • 然后创建两个具有两个不同变量名称的随机选择值列表,并将它们转换为 NumPy 数组,并使用 Numpy 计算每个数组的方差。

  • 定义一个函数来计算F分数,其中首先我们将数组的方差除以自由度为1。

  • 然后计算每个数组的可迭代长度,并将 f 值(方差比率)和长度传递到 CDF 函数中,并从 1 中减去该长度以计算 p 值。

  • 最后,函数返回 p_value 和 f_value。

示例

import numpy as np
import scipy.stats

# Create data
group1 = [0.28, 0.2, 0.26, 0.28, 0.5]
group2 = [0.2, 0.23, 0.26, 0.21, 0.23]

# Converting the list to an array
x = np.array(group1)
y = np.array(group2)

# Calculate the variance of each group
print(np.var(group1), np.var(group2))

def f_test(group1, group2):
   f = np.var(group1, ddof=1)/np.var(group2, ddof=1)
   nun = x.size-1
   dun = y.size-1
   p_value = 1-scipy.stats.f.cdf(f, nun, dun)
   return f, p_value

# perform F-test
f_test(x, y)

输出

Variances: 0.010464 0.00042400000000000017

您可以观察到 F 检验值为 4.38712, 相应的 p 值为 0.019127

由于p值小于0.05,我们将放弃零假设。因此,我们可以说这两个总体的方差不相等。

结论

读完本文后,您现在知道如何使用 F 检验来检查两个样本是否属于具有相同方差的总体。您已经了解了 F 测试过程、假设和 Python 实现。让我们用一些要点来总结这篇文章 -

  • F检验告诉你两个总体是否具有相等的方差。

  • 计算自由度并计算临界值。

  • 从F-表中找到F统计量,并将其与在前一步计算的关键值进行比较。

  • 根据临界值和 F 统计量比较接受或拒绝原假设。

以上是如何在Python中执行F检验的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:tutorialspoint.com。如有侵权,请联系admin@php.cn删除